Câu hỏi:

15/05/2022 2,912

Cho hàm số\(y = \frac{{ax + b}}{{cx + d}}\)có đồ thị như hình vẽ dưới đây. Khẳng định nào sau đây đúng?

Cho hàm số\(y = \frac{{ax + b}}{{cx + d}}\)có đồ thị như hình vẽ dưới đây. Khẳng định nào sau đây đúng? (ảnh 1)

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giao của đồ thị với trục hoành là \(x = - \frac{b}{a}.\) Dựa vào đồ thị ta có \(x = - \frac{b}{a} >0 \Leftrightarrow ab < 0\) nên loại A

Do \(\mathop {\lim }\limits_{x \to + \infty } y = \frac{a}{c}\) nên \(y = \frac{a}{c}\) là đường tiệm cận ngang của đồ thị. Dựa vào đồ thị ta có đường tiệm cận ngang \(y = \frac{a}{c} >0\) nên chọn B.

\(y = \frac{{ad - bc}}{{{{\left( {cx + d} \right)}^2}}}.\) Dựa vào đồ thị ta có hàm số nghịch biến trên từng khoảng xác định nên \(ad < bc\) do đó loại C.

Do \(\mathop {\lim }\limits_{x \to {{\left( { - \frac{d}{c}} \right)}^ + }} y = + \infty \) nên \(x = - \frac{d}{c}\) là đường tiệm cận đứng của đồ thị. Dựa vào đồ thị ta có đường tiệm cận đứng \(x = - \frac{d}{c} >0 \Leftrightarrow cd < 0\) nên loại D.

Đáp án B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\) , có bảng biến thiên như sau. Hỏi đồ thị hàm số \(y = \frac{1}{{f\left( x \right) + 2}}\) có tất cả bao nhiêu đường tiệm cận?

Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\) , có bảng biến thiên như sau. Hỏi đồ thị hàm số \(y = \frac{1}{{f\left( x \right) + 2}}\) có tất cả bao nhiêu đườ (ảnh 1)

Xem đáp án » 15/05/2022 14,010

Câu 2:

Đặt \({\log _2}5 = a\), \({\log _3}2 = b\). Tính \({\log _{15}}20\) theo \(a\) và \(b\) ta được

Xem đáp án » 15/05/2022 5,148

Câu 3:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm f'(x) = 2x - 2x2, mi x 0 . Giá trị nhỏ nhất của hàm số trên \(\left( {0; + \infty } \right)\) là

Xem đáp án » 15/05/2022 3,794

Câu 4:

Hàm số nào sau đây không có cực trị?

Xem đáp án » 11/04/2022 3,698

Câu 5:

Cho tứ diện \[OABC\] có \[OA\], \[OB\], \[OC\] đôi một vuông góc nhau và \[OA = OB\]\[ = OC = 3a\]. Tính khoảng cách giữa hai đường thẳng \[AC\] và \[OB\].

Xem đáp án » 15/05/2022 3,470

Câu 6:

Cho hình chóp tứ giác đều \[S.ABCD\] có cạnh đáy bằng \[a\], cạnh bên bằng \[\frac{{a\sqrt 5 }}{2}\]. Số đo góc giữa hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {ABCD} \right)\] là:

Xem đáp án » 15/05/2022 3,254

Câu 7:

Cho tứ diện \[ABCD\] có \[AC = AD = BC = BD = 1\], mặt phẳng\[\left( {ABC} \right) \bot (ABD)\] và \[\left( {ACD} \right) \bot (BCD)\]. Khoảng cách từ \[A\] đến mặt phẳng \[\left( {BCD} \right)\]là:

Xem đáp án » 15/05/2022 3,157

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn