Câu hỏi:

15/05/2022 482

Cho hình chóp \(S.\,ABCD\) có đáy là hình vuông cạnh \(a\), mặt bên \(SAB\) là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp \(S.\,ABCD\) là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chóp \(S.\,ABCD\) có đáy là hình vuông cạnh \(a\), mặt bên \(SAB\) là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp \(S.\,ABCD\) là (ảnh 1)

Gọi \(H\) là trung điểm \(AB \Rightarrow h = SH = \frac{{a\sqrt 3 }}{2}.\)

\( \Rightarrow V = \frac{1}{3}{a^2}.\frac{{a\sqrt 3 }}{2} = \frac{{{a^3}\sqrt 3 }}{6}.\)

Đáp án C

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét phương trình \(f\left( x \right) + 2 = 0 \Leftrightarrow f\left( x \right) = - 2\) số nghiệm của phương trình \(f\left( x \right) + 2 = 0\) bằng số giao điểm của hàm số \(y = f\left( x \right)\) với đường thẳng \(y = - 2.\)

Nhìn vào bảng biến thiên ta thấy phương trình \(f\left( x \right) + 2 = 0\) có ba nghiệm phân biệt đó là:

\({x_1} = - 1,{x_2} \in \left( {0;2} \right),{x_3} \in \left( {2; + \infty } \right)\)

Ta có \(\mathop {\lim }\limits_{x \to - {1^ + }} \left[ {\frac{1}{{f\left( x \right) + 2}}} \right] = + \infty ,\mathop {\lim }\limits_{x \to x_1^ + } \left[ {\frac{1}{{f\left( x \right) + 2}}} \right] = + \infty ,\mathop {\lim }\limits_{x \to x_2^ + } \left[ {\frac{1}{{f\left( x \right) + 2}}} \right] = + \infty \)

Suy ra hàm số \(y = \frac{1}{{f\left( x \right) + 2}}\) có ba đường tiệm cận đứng.

Xét \(\mathop {\lim }\limits_{x \to - \infty } \left[ {\frac{1}{{f\left( x \right) + 2}}} \right] = \frac{1}{4};\mathop {\lim }\limits_{x \to x_1^ + } \left[ {\frac{1}{{f\left( x \right) + 2}}} \right] = + \infty ;\mathop {\lim }\limits_{x \to + \infty } \left[ {\frac{1}{{f\left( x \right) + 2}}} \right] = 0\)

Suy ra hàm số \(y = \frac{1}{{f\left( x \right) + 2}}\) có hai đường tiệm cận ngang.

Vậy hàm số có 5 đường tiệm cận, vì vậy ta chọn đáp án A.

Lời giải

Cho tứ diện \[OABC\] có \[OA\], \[OB\], \[OC\] đôi một vuông góc nhau và \[OA = OB\]\[ = OC = 3a\]. Tính khoảng cách giữa hai đường thẳng \[AC\] và \[OB\]. (ảnh 1)

Trong mặt phẳng

\(\left( {OAC} \right),\) kẻ \(OK \bot AC\left( 1 \right).\)

Vì \(OA,OB,OC\) đôi một vuông góc nhau nên \(\left\{ \begin{array}{l}OB \bot AC\\OB \bot OA\end{array} \right. \Rightarrow OB \bot \left( {OAC} \right).\)

Mà \(OK \subset \left( {OAC} \right) \Rightarrow OB \bot OK\) (2).

Từ (1) và (2) suy ra \(d\left( {AC,OB} \right) = OK = \frac{{OA.OC}}{{\sqrt {O{A^2} + O{C^2}} }} = \frac{{3a.3a}}{{\sqrt {{{\left( {3a} \right)}^2} + {{\left( {3a} \right)}^2}} }} = \frac{{3a\sqrt 2 }}{2}.\)

Đáp án A

Câu 3

Đặt \({\log _2}5 = a\), \({\log _3}2 = b\). Tính \({\log _{15}}20\) theo \(a\) và \(b\) ta được

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\), \[SA \bot \left( {ABCD} \right)\], \[SB = a\sqrt 3 \]. Tính thể tích \(V\) của khối chóp \(S.ABCD\) theo \[a\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay