Câu hỏi:
15/05/2022 295Hàm số \(y = \left| {{{\left( {x - 1} \right)}^3}\left( {x + 1} \right)} \right|\) có bao nhiêu điểm cực trị?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
\(f\left( x \right) = {\left( {x - 1} \right)^3}\left( {x + 1} \right).\)
\(f'\left( x \right) = 3{\left( {x - 1} \right)^2}\left( {x + 1} \right) + {\left( {x - 1} \right)^3} = {\left( {x - 1} \right)^2}\left( {4x + 2} \right).\)
\(f'\left( x \right) = 0 \Leftrightarrow {\left( {x - 1} \right)^2}\left( {4x + 2} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1 \Rightarrow y = 0\\x = - \frac{1}{2} \Rightarrow y = - \frac{{27}}{{16}}\end{array} \right..\)
\(f'\left( { - 1} \right) = 0.\)
Bảng biến thiên:
Dựa vào bảng biến thiên ta thấy hàm số \(y = \left| {{{\left( {x - 1} \right)}^3}\left( {x + 1} \right)} \right|\) có 3 cực trị.
Đáp án C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\) , có bảng biến thiên như sau. Hỏi đồ thị hàm số \(y = \frac{1}{{f\left( x \right) + 2}}\) có tất cả bao nhiêu đường tiệm cận?
Câu 2:
Đặt \({\log _2}5 = a\), \({\log _3}2 = b\). Tính \({\log _{15}}20\) theo \(a\) và \(b\) ta được
Câu 3:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm . Giá trị nhỏ nhất của hàm số trên \(\left( {0; + \infty } \right)\) là
Câu 5:
Cho tứ diện \[OABC\] có \[OA\], \[OB\], \[OC\] đôi một vuông góc nhau và \[OA = OB\]\[ = OC = 3a\]. Tính khoảng cách giữa hai đường thẳng \[AC\] và \[OB\].
Câu 6:
Cho hình chóp tứ giác đều \[S.ABCD\] có cạnh đáy bằng \[a\], cạnh bên bằng \[\frac{{a\sqrt 5 }}{2}\]. Số đo góc giữa hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {ABCD} \right)\] là:
Câu 7:
Cho tứ diện \[ABCD\] có \[AC = AD = BC = BD = 1\], mặt phẳng\[\left( {ABC} \right) \bot (ABD)\] và \[\left( {ACD} \right) \bot (BCD)\]. Khoảng cách từ \[A\] đến mặt phẳng \[\left( {BCD} \right)\]là:
về câu hỏi!