Câu hỏi:
15/05/2022 2,140Cho hình chóp \[S.ABC\]có \[SA\]vuông góc với mặt phẳng \[\left( {ABC} \right),SA = a,AB = a\],\[AC = 2a,\] \[\widehat {BAC} = {60^0}.\] Tính diện tích hình cầu ngoại tiếp hình chóp \[S.ABC\].
Câu hỏi trong đề: [Năm 2022] Đề thi thử môn Toán THPT Quốc gia có đáp án (30 đề) !!
Bắt đầu thiQuảng cáo
Trả lời:
Gọi \(I\) là tâm đường tròn ngoại tiếp \(\Delta ABC.\)
Gọi \(\Delta \) là đường thẳng qua \(I\) và vuông góc với mặt phẳng \(\left( {ABC} \right).\)
\( \Rightarrow \Delta \) là trục đường tròn ngoại tiếp \(\Delta ABC.\)
Gọi \(E\) là trung điểm \(SA.\)
Trong \(\left( {SA,\Delta } \right),\) gọi \(O\) là giao điểm của \(\Delta \) với đường trung trực cạnh \(SA.\)
Ta có \(\left\{ \begin{array}{l}OA = OB = OC\left( {O \in \Delta } \right)\\OS = OA\left( {O{\rm{ thuo\"a c \~n \"o \^o {\o}ng trung tr\"o \"i c ca\"i nh SA}}} \right)\end{array} \right..\)
\( \Rightarrow OS = OA = OB = OC\)
\( \Rightarrow O\) là tâm mặt cầu ngoại tiếp hình chóp \(S.ABC,\) bán kinh \(R = OA.\)
\(B{C^2} = A{B^2} + A{C^2} - 2.AB.AC.\cos {60^0} = 3{a^2}.\)
\( \Rightarrow BC = a\sqrt 3 .\)
\({S_{\Delta ABC}} = \frac{1}{2}.AB.AC.\sin {60^0} = \frac{1}{2}.a.2a.\frac{{\sqrt 3 }}{2} = \frac{{{a^2}\sqrt 3 }}{2}.\)
\({S_{\Delta ABC}} = \frac{{AB.AC.BC}}{{4{R_{\left( {ABC} \right)}}}} \Leftrightarrow {R_{\left( {ABC} \right)}} = \frac{{AB.AC.BC}}{{4{S_{\Delta ABC}}}} = \frac{{a.2a.a\sqrt 3 }}{{4.\frac{{{a^2}\sqrt 3 }}{2}}} = a.\)
\( \Rightarrow AI = a.\)
Tứ giá \(AEOI\) là hình chữ nhật \( \Rightarrow AO = \sqrt {A{E^2} + A{I^2}} = \sqrt {{a^2} + \frac{{{a^2}}}{4}} = \frac{{a\sqrt 5 }}{2}\)
\( \Rightarrow R = \frac{{a\sqrt 5 }}{2}.\)
Diện tích mặt cầu: \(S = 4\pi {\left( {\frac{{a\sqrt 5 }}{2}} \right)^2} = 5\pi {a^2}.\)
Đáp án C
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\) , có bảng biến thiên như sau. Hỏi đồ thị hàm số \(y = \frac{1}{{f\left( x \right) + 2}}\) có tất cả bao nhiêu đường tiệm cận?
Câu 2:
Đặt \({\log _2}5 = a\), \({\log _3}2 = b\). Tính \({\log _{15}}20\) theo \(a\) và \(b\) ta được
Câu 3:
Cho tứ diện \[OABC\] có \[OA\], \[OB\], \[OC\] đôi một vuông góc nhau và \[OA = OB\]\[ = OC = 3a\]. Tính khoảng cách giữa hai đường thẳng \[AC\] và \[OB\].
Câu 4:
Cho hình chóp tứ giác đều \[S.ABCD\] có cạnh đáy bằng \[a\], cạnh bên bằng \[\frac{{a\sqrt 5 }}{2}\]. Số đo góc giữa hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {ABCD} \right)\] là:
Câu 5:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm . Giá trị nhỏ nhất của hàm số trên \(\left( {0; + \infty } \right)\) là
Câu 6:
Cho hình chóp \[S.ABCD\] có \[SA \bot \left( {ABCD} \right)\], đáy \[ABCD\] là hình chữ nhật với\[AC = a\sqrt 3 \]và \[BC = a\]. Tính khoảng cách giữa \[SD\] và \[BC\].
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải
CÂU TRẮC NGHIỆM ĐÚNG SAI
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận