Câu hỏi:
15/05/2022 2,100Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \[A\]. Biết \(AB = AA' = a\), \(AC = 2a\). Gọi \(M\) là trung điểm của \[AC\]. Diện tích mặt cầu ngoại tiếp tứ diện \(MA'B'C'\) bằng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi \(I\) là trung điểm của cạnh \(B'C'.\) Khi đó \(I\) là tâm đường tròn ngoại tiếp \(\Delta A'B'C'.\)
Gọi \(M'\) là trung điểm của cạnh \(A'C'.\) Khi đó \(MM' \bot \left( {A'B'C'} \right).\)
Do \(MA' = MC' = a\sqrt 2 \) nên \(\Delta MA'C'\) vuông tại \(M,\) do đó \(M'\) là tâm đường tròn ngoại tiếp \(\Delta MA'C'\) nên \(IM'\) là trục của đường tròn ngoại tiếp \(\Delta MA'C'.\) Suy ra \(I\) là tâm mặt cầu ngoại tiếp tứ diện \(M.A'B'C'\).
Bán kính mặt cầu là \(r = IB' = \frac{{BC}}{2} = \frac{{a\sqrt 5 }}{2}.\)
Diện tích mặt cầu là \(S = 4\pi {r^2} = 5\pi {a^2}.\)
Đáp án A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\) , có bảng biến thiên như sau. Hỏi đồ thị hàm số \(y = \frac{1}{{f\left( x \right) + 2}}\) có tất cả bao nhiêu đường tiệm cận?
Câu 2:
Đặt \({\log _2}5 = a\), \({\log _3}2 = b\). Tính \({\log _{15}}20\) theo \(a\) và \(b\) ta được
Câu 3:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm . Giá trị nhỏ nhất của hàm số trên \(\left( {0; + \infty } \right)\) là
Câu 5:
Cho tứ diện \[OABC\] có \[OA\], \[OB\], \[OC\] đôi một vuông góc nhau và \[OA = OB\]\[ = OC = 3a\]. Tính khoảng cách giữa hai đường thẳng \[AC\] và \[OB\].
Câu 6:
Cho hình chóp tứ giác đều \[S.ABCD\] có cạnh đáy bằng \[a\], cạnh bên bằng \[\frac{{a\sqrt 5 }}{2}\]. Số đo góc giữa hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {ABCD} \right)\] là:
Câu 7:
Cho tứ diện \[ABCD\] có \[AC = AD = BC = BD = 1\], mặt phẳng\[\left( {ABC} \right) \bot (ABD)\] và \[\left( {ACD} \right) \bot (BCD)\]. Khoảng cách từ \[A\] đến mặt phẳng \[\left( {BCD} \right)\]là:
về câu hỏi!