Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \[A\]. Biết \(AB = AA' = a\), \(AC = 2a\). Gọi \(M\) là trung điểm của \[AC\]. Diện tích mặt cầu ngoại tiếp tứ diện \(MA'B'C'\) bằng
Câu hỏi trong đề: [Năm 2022] Đề thi thử môn Toán THPT Quốc gia có đáp án (30 đề) !!
Quảng cáo
Trả lời:
Gọi \(I\) là trung điểm của cạnh \(B'C'.\) Khi đó \(I\) là tâm đường tròn ngoại tiếp \(\Delta A'B'C'.\)
Gọi \(M'\) là trung điểm của cạnh \(A'C'.\) Khi đó \(MM' \bot \left( {A'B'C'} \right).\)
Do \(MA' = MC' = a\sqrt 2 \) nên \(\Delta MA'C'\) vuông tại \(M,\) do đó \(M'\) là tâm đường tròn ngoại tiếp \(\Delta MA'C'\) nên \(IM'\) là trục của đường tròn ngoại tiếp \(\Delta MA'C'.\) Suy ra \(I\) là tâm mặt cầu ngoại tiếp tứ diện \(M.A'B'C'\).
Bán kính mặt cầu là \(r = IB' = \frac{{BC}}{2} = \frac{{a\sqrt 5 }}{2}.\)
Diện tích mặt cầu là \(S = 4\pi {r^2} = 5\pi {a^2}.\)
Đáp án A
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét phương trình \(f\left( x \right) + 2 = 0 \Leftrightarrow f\left( x \right) = - 2\) số nghiệm của phương trình \(f\left( x \right) + 2 = 0\) bằng số giao điểm của hàm số \(y = f\left( x \right)\) với đường thẳng \(y = - 2.\)
Nhìn vào bảng biến thiên ta thấy phương trình \(f\left( x \right) + 2 = 0\) có ba nghiệm phân biệt đó là:
\({x_1} = - 1,{x_2} \in \left( {0;2} \right),{x_3} \in \left( {2; + \infty } \right)\)
Ta có \(\mathop {\lim }\limits_{x \to - {1^ + }} \left[ {\frac{1}{{f\left( x \right) + 2}}} \right] = + \infty ,\mathop {\lim }\limits_{x \to x_1^ + } \left[ {\frac{1}{{f\left( x \right) + 2}}} \right] = + \infty ,\mathop {\lim }\limits_{x \to x_2^ + } \left[ {\frac{1}{{f\left( x \right) + 2}}} \right] = + \infty \)
Suy ra hàm số \(y = \frac{1}{{f\left( x \right) + 2}}\) có ba đường tiệm cận đứng.
Xét \(\mathop {\lim }\limits_{x \to - \infty } \left[ {\frac{1}{{f\left( x \right) + 2}}} \right] = \frac{1}{4};\mathop {\lim }\limits_{x \to x_1^ + } \left[ {\frac{1}{{f\left( x \right) + 2}}} \right] = + \infty ;\mathop {\lim }\limits_{x \to + \infty } \left[ {\frac{1}{{f\left( x \right) + 2}}} \right] = 0\)
Suy ra hàm số \(y = \frac{1}{{f\left( x \right) + 2}}\) có hai đường tiệm cận ngang.
Vậy hàm số có 5 đường tiệm cận, vì vậy ta chọn đáp án A.
Lời giải
![Cho tứ diện \[OABC\] có \[OA\], \[OB\], \[OC\] đôi một vuông góc nhau và \[OA = OB\]\[ = OC = 3a\]. Tính khoảng cách giữa hai đường thẳng \[AC\] và \[OB\]. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2022/04/blobid0-1649618447.png)
Trong mặt phẳng
\(\left( {OAC} \right),\) kẻ \(OK \bot AC\left( 1 \right).\)
Vì \(OA,OB,OC\) đôi một vuông góc nhau nên \(\left\{ \begin{array}{l}OB \bot AC\\OB \bot OA\end{array} \right. \Rightarrow OB \bot \left( {OAC} \right).\)
Mà \(OK \subset \left( {OAC} \right) \Rightarrow OB \bot OK\) (2).
Từ (1) và (2) suy ra \(d\left( {AC,OB} \right) = OK = \frac{{OA.OC}}{{\sqrt {O{A^2} + O{C^2}} }} = \frac{{3a.3a}}{{\sqrt {{{\left( {3a} \right)}^2} + {{\left( {3a} \right)}^2}} }} = \frac{{3a\sqrt 2 }}{2}.\)
Đáp án A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.