Câu hỏi:
15/05/2022 1,017Cho hình lăng trụ đứng \[ABC.A'B'C'\] có đáy \[ABC\] là tam giác vuông tại \[A\], gọi \[M\] là trung điểm của cạnh \[AA'\], biết rằng \[AB = 2a;\]\[BC = a\sqrt 7 \] và \[{\rm{AA}}' = 6a\]. Khoảng cách giữa \[{\rm{A'B}}\] và \[CM\] là:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Có \(A{C^2} = B{C^2} - A{B^2} \Leftrightarrow A{C^2} = 7{a^2} - 4{a^2} \Leftrightarrow AC = a\sqrt 3 \)
Gọi \(N\) là trung điểm của \(AB\) suy ra \(A'B//\left( {MNC} \right)\) nên \(d\left( {A'B,CM} \right) = d\left( {A'B,\left( {CMN} \right)} \right) = d\left( {B.\left( {CMN} \right)} \right)\) \( = d\left( {A,\left( {CMN} \right)} \right) = d.\)
Xét tứ diện \(AMNC\) có \(AM,AN,AC\) đôi một vuông góc nên
\(\frac{1}{{{d^2}}} = \frac{1}{{A{M^2}}} + \frac{1}{{A{N^2}}} + \frac{1}{{A{C^2}}} \Leftrightarrow \frac{1}{{{d^2}}} = \frac{1}{{9{a^2}}} + \frac{1}{{{a^2}}} + \frac{1}{{3{a^2}}} \Leftrightarrow \frac{1}{{{d^2}}} = \frac{{13}}{{9{a^2}}} \Leftrightarrow d = \frac{{3a}}{{\sqrt {13} }}.\)
Đáp án C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\) , có bảng biến thiên như sau. Hỏi đồ thị hàm số \(y = \frac{1}{{f\left( x \right) + 2}}\) có tất cả bao nhiêu đường tiệm cận?
Câu 2:
Đặt \({\log _2}5 = a\), \({\log _3}2 = b\). Tính \({\log _{15}}20\) theo \(a\) và \(b\) ta được
Câu 3:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm . Giá trị nhỏ nhất của hàm số trên \(\left( {0; + \infty } \right)\) là
Câu 5:
Cho tứ diện \[OABC\] có \[OA\], \[OB\], \[OC\] đôi một vuông góc nhau và \[OA = OB\]\[ = OC = 3a\]. Tính khoảng cách giữa hai đường thẳng \[AC\] và \[OB\].
Câu 6:
Cho hình chóp tứ giác đều \[S.ABCD\] có cạnh đáy bằng \[a\], cạnh bên bằng \[\frac{{a\sqrt 5 }}{2}\]. Số đo góc giữa hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {ABCD} \right)\] là:
Câu 7:
Cho tứ diện \[ABCD\] có \[AC = AD = BC = BD = 1\], mặt phẳng\[\left( {ABC} \right) \bot (ABD)\] và \[\left( {ACD} \right) \bot (BCD)\]. Khoảng cách từ \[A\] đến mặt phẳng \[\left( {BCD} \right)\]là:
về câu hỏi!