Câu hỏi:

15/05/2022 779

Cho hình chóp \[S.ABC\] có \[SA = x\], \[BC = y\], \[AB = AC = SB = SC = 1\]. Thể tích khối chóp \[S.ABC\] lớn nhất khi tổng \[\left( {x + y} \right)\] bằng

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho hình chóp \[S.ABC\] có \[SA = x\], \[BC = y\], \[AB = AC = SB = SC = 1\]. Thể tích khối chóp \[S.ABC\] lớn nhất khi tổng \[\left( {x + y} \right)\] bằng (ảnh 1)

Gọi \(I,J\) lần lượt là trung điểm \(BC,SA\) nên \(\left\{ \begin{array}{l}BC \bot AI\\BC \bot SI\end{array} \right. \Rightarrow BC \bot \left( {SAI} \right).\)

Hai tam giác cân \(ABC,SBC\) bằng nhau nên \(IA = IS\) suy ra \(\Delta ISA\) cân tại \(I.\)

Trong \(\Delta SBI\) vuông tại \(I\) ta có \(SI = \sqrt {S{B^2} - B{I^2}} = \sqrt {{1^2} - \frac{{{y^2}}}{4}} .\)

Trong \(\Delta SAI\) cân tại \(I\) ta có \(IJ = \sqrt {S{I^2} - S{J^2}} = \sqrt {{1^2} - \frac{{{y^2}}}{4} - \frac{{{x^2}}}{4}} .\)

Khi đó thể tích khối chóp \(S.ABC\) là \(V = \frac{1}{3}.BC.{S_{SAI}} = \frac{1}{3}.BC.AI.IJ = \frac{1}{6}xy\sqrt {1 - \frac{{{y^2} + {x^2}}}{4}} \)

Ta có \({x^2} + {y^2} \ge 2xy,\forall x,y \in \mathbb{R} \Rightarrow V \le \frac{1}{6}xy\sqrt {1 - \frac{{xy}}{2}} \)

\( \Leftrightarrow \frac{1}{{12}}\sqrt {xy} .\sqrt {xy} .\sqrt {4 - 2xy} \le \frac{1}{{12}}{\left( {\frac{{xy + xy + 4 - 2xy}}{3}} \right)^{\frac{3}{2}}} \le \frac{{2\sqrt 3 }}{{27}}\)

Dấu “=” xảy ra tại \(x = y = \frac{2}{{\sqrt 3 }}\) suy ra \(x + y = \frac{4}{{\sqrt 3 }}.\)

Đáp án D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\) , có bảng biến thiên như sau. Hỏi đồ thị hàm số \(y = \frac{1}{{f\left( x \right) + 2}}\) có tất cả bao nhiêu đường tiệm cận?

Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\) , có bảng biến thiên như sau. Hỏi đồ thị hàm số \(y = \frac{1}{{f\left( x \right) + 2}}\) có tất cả bao nhiêu đườ (ảnh 1)

Xem đáp án » 15/05/2022 15,217

Câu 2:

Đặt \({\log _2}5 = a\), \({\log _3}2 = b\). Tính \({\log _{15}}20\) theo \(a\) và \(b\) ta được

Xem đáp án » 15/05/2022 5,241

Câu 3:

Cho hàm số \(y = f\left( x \right)\) có đạo hàm f'(x) = 2x - 2x2, mi x 0 . Giá trị nhỏ nhất của hàm số trên \(\left( {0; + \infty } \right)\) là

Xem đáp án » 15/05/2022 3,932

Câu 4:

Hàm số nào sau đây không có cực trị?

Xem đáp án » 11/04/2022 3,782

Câu 5:

Cho tứ diện \[OABC\] có \[OA\], \[OB\], \[OC\] đôi một vuông góc nhau và \[OA = OB\]\[ = OC = 3a\]. Tính khoảng cách giữa hai đường thẳng \[AC\] và \[OB\].

Xem đáp án » 15/05/2022 3,610

Câu 6:

Cho hình chóp tứ giác đều \[S.ABCD\] có cạnh đáy bằng \[a\], cạnh bên bằng \[\frac{{a\sqrt 5 }}{2}\]. Số đo góc giữa hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {ABCD} \right)\] là:

Xem đáp án » 15/05/2022 3,455

Câu 7:

Cho tứ diện \[ABCD\] có \[AC = AD = BC = BD = 1\], mặt phẳng\[\left( {ABC} \right) \bot (ABD)\] và \[\left( {ACD} \right) \bot (BCD)\]. Khoảng cách từ \[A\] đến mặt phẳng \[\left( {BCD} \right)\]là:

Xem đáp án » 15/05/2022 3,313

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store