Câu hỏi:
15/05/2022 959Cho \(4\) số \(a,\,b,\,c,\,d\) thỏa mãn điều kiện \({a^2} + {b^2} = 4a + 6b - 9\) và \(3c + 4d = 1\). Tìm giá trị nhỏ nhất của biểu thức \(P = {\left( {a - c} \right)^2} + {\left( {b - d} \right)^2}\) ?
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Ta có: \({a^2} + {b^2} = 4a + 6b - 9 \Leftrightarrow {\left( {a - 2} \right)^2} + {\left( {b - 3} \right)^2} = {2^2}.\)
Trong hệ trục tọa độ \(Oxy\) gọi \(A\left( {a;b} \right),B\left( {c;d} \right).\)
Khi đó \(A\left( {a;b} \right)\) nằm trên đường tròn tâm \(I\left( {2;3} \right)\) bán kính \(R = 2\) có phương trình: \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} = {2^2}.\) \(B\left( {c;d} \right)\) nằm trên đường thẳng: \(3x + 4y = 1.\)
Vì \(\overrightarrow {BA} = \left( {a - c;b - d} \right)\) nên \(P = {\left( {a - c} \right)^2} + {\left( {b - d} \right)^2} = {\left| {\overrightarrow {BA} } \right|^2}.\) Khi đó \(P\) đạt giá trị nhỏ nhất khi \(\left| {\overrightarrow {BA} } \right|\) nhỏ nhất.
Khoảng cách từ \(I\) đến \(\left( \Delta \right):{d_{\left( {I,\left( \Delta \right)} \right)}} = \frac{{3.2 + 4.3 - 1}}{{\sqrt {{3^2} + {4^2}} }} = \frac{{17}}{5}.\) Vì \({d_{\left( {I,\left( \Delta \right)} \right)}} >R\) nên \(\left( I \right)\) và \(\left( \Delta \right)\) không giao nhau.
Suy ra \(\left| {\overrightarrow {BA} } \right|\) nhỏ nhất khi \(I,A,B\) thẳng hàng và \(A\) nằm giữa \(I,B\) và \(IB \bot \left( \Delta \right)\) như hình sau.
\(\min \left( P \right) = \min \left( {{{\left| {\overrightarrow {BA} } \right|}^2}} \right) = {\left( {\frac{7}{5}} \right)^2} = \frac{{49}}{{25}}.\)
Đáp án D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\) , có bảng biến thiên như sau. Hỏi đồ thị hàm số \(y = \frac{1}{{f\left( x \right) + 2}}\) có tất cả bao nhiêu đường tiệm cận?
Câu 2:
Đặt \({\log _2}5 = a\), \({\log _3}2 = b\). Tính \({\log _{15}}20\) theo \(a\) và \(b\) ta được
Câu 3:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm . Giá trị nhỏ nhất của hàm số trên \(\left( {0; + \infty } \right)\) là
Câu 5:
Cho tứ diện \[OABC\] có \[OA\], \[OB\], \[OC\] đôi một vuông góc nhau và \[OA = OB\]\[ = OC = 3a\]. Tính khoảng cách giữa hai đường thẳng \[AC\] và \[OB\].
Câu 6:
Cho hình chóp tứ giác đều \[S.ABCD\] có cạnh đáy bằng \[a\], cạnh bên bằng \[\frac{{a\sqrt 5 }}{2}\]. Số đo góc giữa hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {ABCD} \right)\] là:
Câu 7:
Cho tứ diện \[ABCD\] có \[AC = AD = BC = BD = 1\], mặt phẳng\[\left( {ABC} \right) \bot (ABD)\] và \[\left( {ACD} \right) \bot (BCD)\]. Khoảng cách từ \[A\] đến mặt phẳng \[\left( {BCD} \right)\]là:
về câu hỏi!