Câu hỏi:
15/05/2022 213Cho hình chóp \[S.ABCD\] có đáy là hình vuông, cạnh bên \[SA\] vuông góc với đáy. Gọi \[M\], \[N\] là trung điểm của \[SA\], \[SB\]. Mặt phẳng \[MNCD\] chia hình chóp đã cho thành hai phần. tỉ số thể tích hai phần \[S.MNCD\] và \[MNABCD\] là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có \({V_{S.MNCD}} = {V_{S.MCD}} + {V_{S.MNC}}\)
+ \(\frac{{{V_{S.MCD}}}}{{{V_{S.ACD}}}} = \frac{{SM}}{{SA}}.\frac{{SC}}{{SC}}.\frac{{SD}}{{SD}} = \frac{1}{2} \Rightarrow {V_{S.MCD}} = \frac{1}{2}{V_{S.ACD}} = \frac{1}{4}{V_{S.ABCD}}.\)
+ \(\frac{{{V_{S.MNC}}}}{{{V_{S.ABC}}}} = \frac{{SM}}{{SA}}.\frac{{SN}}{{SB}}.\frac{{SC}}{{SC}} = \frac{1}{4} \Rightarrow {V_{S.MNC}} = \frac{1}{4}{V_{S.ABC}} = \frac{1}{8}{V_{S.ABCD}}.\)
\( \Rightarrow {V_{S.MNCD}} = {V_{S.MCD}} + {V_{S.MNC}} = \frac{1}{4}{V_{S.ABCD}} + \frac{1}{8}{V_{S.ABCD}} = \frac{3}{8}{V_{S.ABCD}}.\)
\( \Rightarrow {V_{MNABCD}} = {V_{S.ABCD}} - {V_{S.MNCD}} = {V_{S.ABCD}} - \frac{3}{8}{V_{S.ABCD}} = \frac{5}{8}{V_{S.ABCD}}.\)
Do đó \(\frac{{{V_{S.MNCD}}}}{{{V_{MNABCD}}}} = \frac{{\frac{3}{8}{V_{S.ABCD}}}}{{\frac{5}{8}{V_{S.ABCD}}}} = \frac{3}{5}.\)
Đáp án D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\) , có bảng biến thiên như sau. Hỏi đồ thị hàm số \(y = \frac{1}{{f\left( x \right) + 2}}\) có tất cả bao nhiêu đường tiệm cận?
Câu 2:
Đặt \({\log _2}5 = a\), \({\log _3}2 = b\). Tính \({\log _{15}}20\) theo \(a\) và \(b\) ta được
Câu 3:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm . Giá trị nhỏ nhất của hàm số trên \(\left( {0; + \infty } \right)\) là
Câu 5:
Cho tứ diện \[OABC\] có \[OA\], \[OB\], \[OC\] đôi một vuông góc nhau và \[OA = OB\]\[ = OC = 3a\]. Tính khoảng cách giữa hai đường thẳng \[AC\] và \[OB\].
Câu 6:
Cho hình chóp tứ giác đều \[S.ABCD\] có cạnh đáy bằng \[a\], cạnh bên bằng \[\frac{{a\sqrt 5 }}{2}\]. Số đo góc giữa hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {ABCD} \right)\] là:
Câu 7:
Cho tứ diện \[ABCD\] có \[AC = AD = BC = BD = 1\], mặt phẳng\[\left( {ABC} \right) \bot (ABD)\] và \[\left( {ACD} \right) \bot (BCD)\]. Khoảng cách từ \[A\] đến mặt phẳng \[\left( {BCD} \right)\]là:
về câu hỏi!