Câu hỏi:

25/04/2022 235

Tìm tất cả các giá trị thực của tham số \(m\) để đoạn \(\left[ { - \frac{{2\pi }}{3};\frac{\pi }{3}} \right]\) là tập hợp con của tập nghiệm bất phương trình \({\log _{\frac{1}{5}}}\left( {{{\cos }^2}x + 1} \right) < {\log _{\frac{1}{5}}}\left( {{{\cos }^2}x + 4\cos x + m} \right) + 1.\)</>

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Để đoạn \(\left[ { - \frac{{2\pi }}{3};\frac{\pi }{3}} \right]\) là tập hợp con của tập nghiệm bất phương trình \({\log _{\frac{1}{5}}}\left( {{{\cos }^2}x + 1} \right) < {\log _{\frac{1}{5}}}\left( {{{\cos }^2}x + 4\cos x + m} \right) + 1\) thì:

\({\log _{\frac{1}{5}}}\left( {{{\cos }^2}x + 1} \right) < {\log _{\frac{1}{5}}}\left( {{{\cos }^2}x + 4\cos x + m} \right) + 1,\forall x \in \left[ { - \frac{{2\pi }}{3};\frac{\pi }{3}} \right]\)

\( \Leftrightarrow {\log _{\frac{1}{5}}}\left( {{{\cos }^2}x + 1} \right) < {\log _{\frac{1}{5}}}\left( {\frac{{{{\cos }^2}x + 4\cos x + m}}{5}} \right),\forall x \in \left[ { - \frac{{2\pi }}{3};\frac{\pi }{3}} \right]\)

\( \Leftrightarrow \left\{ \begin{array}{l}{\cos ^2}x + 4\cos x + m >0\\5{\cos ^2}x + 5 >{\cos ^2}x + 4\cos x + m\end{array} \right.,\forall x \in \left[ { - \frac{{2\pi }}{3};\frac{\pi }{3}} \right]\)

\( \Leftrightarrow \left\{ \begin{array}{l}m >- {\cos ^2}x - 4\cos x\\m < 4{\cos ^2}x - 4\cos x + 5\end{array} \right.,\forall x \in \left[ { - \frac{{2\pi }}{3};\frac{\pi }{3}} \right]\)\(\left( 1 \right)\)

Đặt \(t = \cos x.\) Khi đó ta có (1) trở thành: \(\left\{ \begin{array}{l}m >- {t^2} - 4t\\m < 4{t^2} - 4t + 5\end{array} \right.,\forall t \in \left[ { - \frac{1}{2};1} \right].\)

+ Để \(m >- {t^2} - 4t,\forall t \in \left[ { - \frac{1}{2};1} \right] \Leftrightarrow m >\mathop {\max }\limits_{\left[ { - \frac{1}{2};1} \right]} \left( { - {t^2} - 4t} \right){\rm{ }}\left( 2 \right)\)

Xét hàm số \(f\left( { - \frac{1}{2}} \right) = \frac{7}{4};f\left( { - 1} \right) = - 5.\) Do đó \(\mathop {\max }\limits_{\left[ { - \frac{1}{2};1} \right]} f\left( t \right) = \frac{7}{4}.\) Nên \(\left( 2 \right) \Leftrightarrow m >\frac{7}{4}.\)

+ Để \(m < 4{t^2} - 4t + 5,\forall t \in \left[ { - \frac{1}{2};1} \right] \Leftrightarrow m < \mathop {\min }\limits_{\left[ { - \frac{1}{2};1} \right]} \left( {4{t^2} - 4t + 5} \right){\rm{ }}\left( 3 \right)\)

Xét hàm số \(f\left( t \right) = 4{t^2} - 4t + 5,\forall t \in \left[ { - \frac{1}{2};1} \right].\) Ta có \(g'\left( t \right) = 8t - 4 = 0 \Leftrightarrow t = \frac{1}{2}.\)

\(g\left( { - \frac{1}{2}} \right) = 8,g\left( 1 \right) = 5,g\left( {\frac{1}{2}} \right) = 4.\) Do đó \(\mathop {\min }\limits_{\left[ { - \frac{1}{2};1} \right]} g\left( t \right) = 4.\) Nên \(\left( 3 \right) \Leftrightarrow m < 4.\)

Vậy \(m \in \left( {\frac{7}{4};4} \right)\) thỏa mãn yêu cầu bài toán.

Đáp án C

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm tất cả các giá trị của \(m\) để hàm số \(y = \left( {m - 1} \right){x^3} - 3\left( {m - 1} \right){x^2} + 3x + 2\) đồng biến trên \(\mathbb{R}.\)

Xem đáp án » 25/04/2022 27,059

Câu 2:

Cho biểu thức \(P = \sqrt[4]{{x\sqrt[3]{{{x^2}.\sqrt[3]{x}}}}},x >0.\) Mệnh đề nào dưới đây là đúng?

Xem đáp án » 25/04/2022 12,773

Câu 3:

Cho \(a,b,c\) là các số thực khác 0 thỏa mãn \({4^a} = {25^b} = {10^c}.\) Tính giá trị biểu thức \(A = \frac{c}{a} + \frac{c}{b}.\)

Xem đáp án » 25/04/2022 10,891

Câu 4:

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R},\) có \(f'\left( x \right) = {\left( {x + 2} \right)^2}{\left( {x - 2} \right)^3}\left( { - x + 5} \right).\) Số điểm cực trị của hàm số \(y = f\left( x \right)\) là

Xem đáp án » 25/04/2022 4,981

Câu 5:

Cho hàm số \(f\left( x \right)\) có đại hàm \(f'\left( x \right) = {\left( {x + 1} \right)^2}\left( {{x^2} - 4x} \right)\). Có bao nhiêu giá trị nguyên dương của tham số \(m\) để hàm số \(g\left( x \right) = f\left( {2{x^2} - 12x + m} \right)\) có đúng 5 điểm cực trị?

Xem đáp án » 25/04/2022 4,825

Câu 6:

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a.\) Số đo góc giữa \(\left( {BA'C} \right)\) và \(\left( {DA'C} \right).\)

Xem đáp án » 25/04/2022 3,488

Câu 7:

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật có \(AB = a;BC = 2a.\) Hai mặt phẳng \(\left( {SAB} \right)\) và mặt phẳng \(\left( {SAD} \right)\) cùng vuông góc với mặt phẳng đáy, cạnh \(SC\) hợp với mặt đáy góc \({60^0}.\) Tính thể tích khối chóp \(S.ABCD\) theo \(a.\)

Xem đáp án » 25/04/2022 3,483
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua