Câu hỏi:

25/04/2022 2,765 Lưu

Có bao nhiêu giá trị nguyên \(m\) để hàm số \(y = {x^3} - 3{x^2} - mx + 4\) có hai điểm cực trị thuộc khoảng \(\left( { - 3;3} \right)?\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(y = {x^3} - 3{x^2} - mx + 4{\rm{ }}\left( 1 \right)\)

\(y' = 3{x^2} - 6x - m\)

Xét: \(g\left( x \right) = 3{x^2} - 6x - m\)

Hàm số \(\left( 1 \right)\) có hai cực trị thuộc khoảng \(\left( { - 3;3} \right)\) khi \(g\left( x \right) = 0\) có hai nghiệm phân biệt thuộc khoảng \(\left( { - 3;3} \right).\)

Ta có: \(g\left( x \right) = 0 \Leftrightarrow 3{x^2} - 6x - m = 0 \Leftrightarrow 3{x^2} - 6x = m\)

Xét: \(h\left( x \right) = 3{x^2} - 6x \Rightarrow h'\left( x \right) = 6x - 6,\) cho \(h'\left( x \right) = 0 \Leftrightarrow x = 1.\)

Bảng biến thiên:

Có bao nhiêu giá trị nguyên \(m\) để hàm số \(y = {x^3} - 3{x^2} - mx + 4\) có hai điểm cực trị thuộc khoảng \(\left( { - 3;3} \right)?\) (ảnh 1)

Dựa vào bảng biến thiên, ta có \(m \in \left( { - 3;9} \right).\) Vậy có 11 giá trị nguyên của \(m.\)

Đáp án D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tập xác định \(D = \mathbb{R}\)

Ta có: \(y' = 3\left( {m - 1} \right){x^2} - 6\left( {m - 1} \right)x + 3.\)

Trường hợp 1: \(m - 1 = 0 \Leftrightarrow m = 1 \Rightarrow y = 3x + 2 \Rightarrow \) Hàm số đồng biến trên \(\mathbb{R}.\)

Trường hợp 2: \(m - 1 \ne 0 \Rightarrow y' \ge 0{\rm{ }}\forall x \in \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}m - 1 >0\\\Delta ' \le 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}m >1\\9{\left( {m - 1} \right)^2} - 9\left( {m - 1} \right) \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m >1\\1 \le m \le 2\end{array} \right. \Leftrightarrow 1 < m \le 2.\)

Kết hợp hai trường hợp trên suy ra \(1 < m \le 2.\)

Đáp án D

Câu 2

Lời giải

\(P = \sqrt[4]{{x\sqrt[3]{{{x^2}.\sqrt {{x^3}} }}}} = \sqrt[4]{{x\sqrt[3]{{{x^2}.{x^{\frac{3}{2}}}}}}} = \sqrt[4]{{x\sqrt[3]{{{x^{\frac{7}{2}}}}}}} = \sqrt[4]{{x.{x^{\frac{7}{6}}}}} = \sqrt[4]{{{x^{\frac{{13}}{6}}}}} = {x^{\frac{{13}}{{24}}}}\)

Đáp án C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP