Một hình thang cân \(ABCD\) có đáy nhỏ \(AB = 1,\) đáy lớn \(CD = 3,\) cạnh bên \(BC = AD = \sqrt 2 .\) Cho hình thang \(ABCD\) quay quanh \(AB\) ta được khối nó xoay có thể tích là
Quảng cáo
Trả lời:

Khi quay hình thang quanh cạnh \(AB\) ta được khối tròn xoay.
Kẻ các đường cao \(AH,BK.\) Khi đó: \(HK = AB = 1 \Rightarrow CK = DK = 1\)
Áp dụng pitago trong các tam giác vuông \(AHC,BKD\) ta được: \(AH = BK = 1\)
Xét khối trụ có đường cao \(CD = 3,\) bán kính \(AH = 1.\) Khi đó thể tích khối trụ:
\({V_{\left( T \right)}} = \pi .A{H^2}.CD = 3\pi \)
Xét khối nón có đường sinh \(AD = \sqrt 2 ,\) bán kính \(AH = 1,\) đường cao \(DH = 1.\) Khi đó thể tích khối nón
\({V_{\left( N \right)}} = \frac{1}{3}.\pi .A{H^2}.DH = \frac{\pi }{3}\)
Thể tích khối tròn xoay:
\(V = {V_{\left( T \right)}} - 2{V_{\left( N \right)}} = \frac{{7\pi }}{3}\)
Đáp án A
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Tập xác định \(D = \mathbb{R}\)
Ta có: \(y' = 3\left( {m - 1} \right){x^2} - 6\left( {m - 1} \right)x + 3.\)
Trường hợp 1: \(m - 1 = 0 \Leftrightarrow m = 1 \Rightarrow y = 3x + 2 \Rightarrow \) Hàm số đồng biến trên \(\mathbb{R}.\)
Trường hợp 2: \(m - 1 \ne 0 \Rightarrow y' \ge 0{\rm{ }}\forall x \in \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}m - 1 >0\\\Delta ' \le 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m >1\\9{\left( {m - 1} \right)^2} - 9\left( {m - 1} \right) \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m >1\\1 \le m \le 2\end{array} \right. \Leftrightarrow 1 < m \le 2.\)
Kết hợp hai trường hợp trên suy ra \(1 < m \le 2.\)
Đáp án D
Lời giải
\(P = \sqrt[4]{{x\sqrt[3]{{{x^2}.\sqrt {{x^3}} }}}} = \sqrt[4]{{x\sqrt[3]{{{x^2}.{x^{\frac{3}{2}}}}}}} = \sqrt[4]{{x\sqrt[3]{{{x^{\frac{7}{2}}}}}}} = \sqrt[4]{{x.{x^{\frac{7}{6}}}}} = \sqrt[4]{{{x^{\frac{{13}}{6}}}}} = {x^{\frac{{13}}{{24}}}}\)
Đáp án C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.