Câu hỏi:
25/04/2022 873Anh Minh muốn xây dựng một hố ga không có nắp đậy dạng hình hộp chữ nhật có thể tích chứa được \(3200c{m^3}\), tỉ số giữa chiều cao và chiều rộng của hố ga bằng 2 . Xác định diện tích đáy của hố ga để khi xây hố tiết kiệm được nguyên vật liệu nhất.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi chiều rộng của hố ga là \(x\left( {cm} \right)\left( {x >0} \right) \Rightarrow \) chiều cao của hố ga là \(2x\left( {cm} \right)\)
Hố ga dạng hình hộp chữ nhật có thể tích là \(3200c{m^3} \Rightarrow \) Chiều dài hố ga là \(\frac{{3200}}{{x.2x}} = \frac{{1600}}{{{x^2}}}\left( {cm} \right)\)
Tổng diện tích cần xây hố ga (5 mặt, trừ mặt đáy trên) là:
\(S = 2.\left( {x + \frac{{1600}}{{{x^2}}}} \right).2x + x.\frac{{1600}}{{{x^2}}} = 4{x^2} + \frac{{8000}}{x}\left( {c{m^2}} \right)\)
Theo bất đẳng thức AM-GM, ta có: \(S = 4{x^2} + \frac{{4000}}{x} + \frac{{4000}}{x} \ge 3\sqrt[3]{{4{x^2}.\frac{{4000}}{x}.\frac{{400}}{x}}} = 1200\)
Dấu “=” xảy ra khi và chỉ khi \(4{x^2} = \frac{{4000}}{x} \Leftrightarrow {x^3} = 1000 \Leftrightarrow x = 10\) (thỏa mãn)
Với \(x = 10\) thì diện tích mặt đáy của hố ga là \(10.\frac{{1600}}{{{{10}^2}}} = 160\left( {c{m^2}} \right).\)
Đáp án B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm tất cả các giá trị của \(m\) để hàm số \(y = \left( {m - 1} \right){x^3} - 3\left( {m - 1} \right){x^2} + 3x + 2\) đồng biến trên \(\mathbb{R}.\)
Câu 2:
Cho biểu thức \(P = \sqrt[4]{{x\sqrt[3]{{{x^2}.\sqrt[3]{x}}}}},x >0.\) Mệnh đề nào dưới đây là đúng?
Câu 3:
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R},\) có \(f'\left( x \right) = {\left( {x + 2} \right)^2}{\left( {x - 2} \right)^3}\left( { - x + 5} \right).\) Số điểm cực trị của hàm số \(y = f\left( x \right)\) là
Câu 4:
Cho hàm số \(f\left( x \right)\) có đại hàm \(f'\left( x \right) = {\left( {x + 1} \right)^2}\left( {{x^2} - 4x} \right)\). Có bao nhiêu giá trị nguyên dương của tham số \(m\) để hàm số \(g\left( x \right) = f\left( {2{x^2} - 12x + m} \right)\) có đúng 5 điểm cực trị?
Câu 5:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật có \(AB = a;BC = 2a.\) Hai mặt phẳng \(\left( {SAB} \right)\) và mặt phẳng \(\left( {SAD} \right)\) cùng vuông góc với mặt phẳng đáy, cạnh \(SC\) hợp với mặt đáy góc \({60^0}.\) Tính thể tích khối chóp \(S.ABCD\) theo \(a.\)
Câu 6:
Cho hình chóp \(S.ABCD\) có đáy là hình thang có \(AD//BC,M\) là điểm di động trong hình thang \(ABCD.\) Qua \(M\) kẻ đường thẳng song song với \(SA\) và \(SB\) lần lượt cắt các mặt \(\left( {SBC} \right)\) và \(\left( {SAD} \right)\) tại \(N\) và \(P.\) Cho \(SA = a,SB = b.\) Tìm giá trị lớn nhất của biểu thức \(T = M{N^2}.MP.\)
Câu 7:
Cho \(a,b,c\) là các số thực khác 0 thỏa mãn \({4^a} = {25^b} = {10^c}.\) Tính giá trị biểu thức \(A = \frac{c}{a} + \frac{c}{b}.\)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 3)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 5)
30 đề thi THPT Quốc gia môn Toán năm 2022 có lời giải (đề 1)
Đề minh họa THPT Quốc gia môn Toán năm 2023 có đáp án
về câu hỏi!