Câu hỏi:
25/04/2022 230Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng 1. Cắt hình lập phương bằng một mặt phẳng đi qua đường chéo \(BD'\). Tìm giá trị nhỏ nhất của diện tích thiết diện thu được.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Gọi \(O\) là trung điểm \(BD'.\)
Gọi \(E,F\) là tâm hình vuông \(ABB'A'\) và \(DCC'D'.\)
Giả sử thiết diện qua \(BD'\) và cắt \[AD\] trung điểm \(M\) của \(AD.\)
Trong \(\left( {ADC'B'} \right)\) gọi \(N = B'C' \cap OM \Rightarrow N\) là trung điểm \(B'C'.\)
\( \Rightarrow MN = AB' = BC' = \sqrt 2 .\)
Tứ giác \(BMD'N\) là hình thoi \(\left( {MB = MD' = NB = ND' = \frac{{\sqrt 5 }}{2}} \right).\)
\({S_{BMD'N}} = \frac{1}{2}MN.BD' = \frac{{\sqrt 6 }}{2}.\)
Ta chứng minh \(M\) là trung điểm của \(AD\) thì diện tích thiết diện đạt giá trị nhỏ nhất.
Lấy \(M'\) bất kỳ trên \(AD.\) Kẻ \(M'H \bot EF,M'K \bot BD'.\)
Tứ giác \(MM'HO\) là hình bình hành \( \Rightarrow \left\{ \begin{array}{l}M'H = MO\\M'H//MO\end{array} \right..\)
Mà \(MO \bot \left( {A'BCD'} \right) \Rightarrow M'H \bot \left( {A'BCD'} \right).\)
\(\Delta M'HK\) vuông tại \(H \Rightarrow M'K \ge M'H = MO\)
\(\left\{ \begin{array}{l}{S_{BM'D'N'}} = 2{S_{\Delta M'BD'}} = 2.\frac{1}{2}M'K.BD' = \sqrt 3 M'K\\{S_{BMD'N}} = 2{S_{\Delta MBD}} = 2.\frac{1}{2}MO.BD' = \sqrt 3 MO\end{array} \right.\)
\( \Rightarrow {S_{BM'D'N'}} \ge {S_{BMD'N}}.\)
Dấu “=” xảy ra \( \Leftrightarrow M' \equiv M.\)
Đáp án B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm tất cả các giá trị của \(m\) để hàm số \(y = \left( {m - 1} \right){x^3} - 3\left( {m - 1} \right){x^2} + 3x + 2\) đồng biến trên \(\mathbb{R}.\)
Câu 2:
Cho biểu thức \(P = \sqrt[4]{{x\sqrt[3]{{{x^2}.\sqrt[3]{x}}}}},x >0.\) Mệnh đề nào dưới đây là đúng?
Câu 3:
Cho \(a,b,c\) là các số thực khác 0 thỏa mãn \({4^a} = {25^b} = {10^c}.\) Tính giá trị biểu thức \(A = \frac{c}{a} + \frac{c}{b}.\)
Câu 4:
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R},\) có \(f'\left( x \right) = {\left( {x + 2} \right)^2}{\left( {x - 2} \right)^3}\left( { - x + 5} \right).\) Số điểm cực trị của hàm số \(y = f\left( x \right)\) là
Câu 5:
Cho hàm số \(f\left( x \right)\) có đại hàm \(f'\left( x \right) = {\left( {x + 1} \right)^2}\left( {{x^2} - 4x} \right)\). Có bao nhiêu giá trị nguyên dương của tham số \(m\) để hàm số \(g\left( x \right) = f\left( {2{x^2} - 12x + m} \right)\) có đúng 5 điểm cực trị?
Câu 6:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật có \(AB = a;BC = 2a.\) Hai mặt phẳng \(\left( {SAB} \right)\) và mặt phẳng \(\left( {SAD} \right)\) cùng vuông góc với mặt phẳng đáy, cạnh \(SC\) hợp với mặt đáy góc \({60^0}.\) Tính thể tích khối chóp \(S.ABCD\) theo \(a.\)
Câu 7:
Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a.\) Số đo góc giữa \(\left( {BA'C} \right)\) và \(\left( {DA'C} \right).\)
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
50 bài tập Hình học không gian có lời giải
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận