Câu hỏi:

25/04/2022 156

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng 1. Cắt hình lập phương bằng một mặt phẳng đi qua đường chéo \(BD'\). Tìm giá trị nhỏ nhất của diện tích thiết diện thu được.

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng 1. Cắt hình lập phương bằng một mặt phẳng đi qua đường chéo \(BD'\). Tìm giá trị nhỏ nhất của diện tích thiết diện thu được. (ảnh 1)

Gọi \(O\) là trung điểm \(BD'.\)

Gọi \(E,F\) là tâm hình vuông \(ABB'A'\) và \(DCC'D'.\)

Giả sử thiết diện qua \(BD'\) và cắt \[AD\] trung điểm \(M\) của \(AD.\)

Trong \(\left( {ADC'B'} \right)\) gọi \(N = B'C' \cap OM \Rightarrow N\) là trung điểm \(B'C'.\)

\( \Rightarrow MN = AB' = BC' = \sqrt 2 .\)

Tứ giác \(BMD'N\) là hình thoi \(\left( {MB = MD' = NB = ND' = \frac{{\sqrt 5 }}{2}} \right).\)

\({S_{BMD'N}} = \frac{1}{2}MN.BD' = \frac{{\sqrt 6 }}{2}.\)

Ta chứng minh \(M\) là trung điểm của \(AD\) thì diện tích thiết diện đạt giá trị nhỏ nhất.

Lấy \(M'\) bất kỳ trên \(AD.\) Kẻ \(M'H \bot EF,M'K \bot BD'.\)

Tứ giác \(MM'HO\) là hình bình hành \( \Rightarrow \left\{ \begin{array}{l}M'H = MO\\M'H//MO\end{array} \right..\)

Mà \(MO \bot \left( {A'BCD'} \right) \Rightarrow M'H \bot \left( {A'BCD'} \right).\)

\(\Delta M'HK\) vuông tại \(H \Rightarrow M'K \ge M'H = MO\)

\(\left\{ \begin{array}{l}{S_{BM'D'N'}} = 2{S_{\Delta M'BD'}} = 2.\frac{1}{2}M'K.BD' = \sqrt 3 M'K\\{S_{BMD'N}} = 2{S_{\Delta MBD}} = 2.\frac{1}{2}MO.BD' = \sqrt 3 MO\end{array} \right.\)

\( \Rightarrow {S_{BM'D'N'}} \ge {S_{BMD'N}}.\)

Dấu “=” xảy ra \( \Leftrightarrow M' \equiv M.\)

Đáp án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm tất cả các giá trị của \(m\) để hàm số \(y = \left( {m - 1} \right){x^3} - 3\left( {m - 1} \right){x^2} + 3x + 2\) đồng biến trên \(\mathbb{R}.\)

Xem đáp án » 25/04/2022 24,590

Câu 2:

Cho biểu thức \(P = \sqrt[4]{{x\sqrt[3]{{{x^2}.\sqrt[3]{x}}}}},x >0.\) Mệnh đề nào dưới đây là đúng?

Xem đáp án » 25/04/2022 8,184

Câu 3:

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R},\) có \(f'\left( x \right) = {\left( {x + 2} \right)^2}{\left( {x - 2} \right)^3}\left( { - x + 5} \right).\) Số điểm cực trị của hàm số \(y = f\left( x \right)\) là

Xem đáp án » 25/04/2022 4,578

Câu 4:

Cho hàm số \(f\left( x \right)\) có đại hàm \(f'\left( x \right) = {\left( {x + 1} \right)^2}\left( {{x^2} - 4x} \right)\). Có bao nhiêu giá trị nguyên dương của tham số \(m\) để hàm số \(g\left( x \right) = f\left( {2{x^2} - 12x + m} \right)\) có đúng 5 điểm cực trị?

Xem đáp án » 25/04/2022 3,771

Câu 5:

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật có \(AB = a;BC = 2a.\) Hai mặt phẳng \(\left( {SAB} \right)\) và mặt phẳng \(\left( {SAD} \right)\) cùng vuông góc với mặt phẳng đáy, cạnh \(SC\) hợp với mặt đáy góc \({60^0}.\) Tính thể tích khối chóp \(S.ABCD\) theo \(a.\)

Xem đáp án » 25/04/2022 2,653

Câu 6:

Cho \(a,b,c\) là các số thực khác 0 thỏa mãn \({4^a} = {25^b} = {10^c}.\) Tính giá trị biểu thức \(A = \frac{c}{a} + \frac{c}{b}.\)

Xem đáp án » 25/04/2022 2,041

Câu 7:

Cho hình chóp \(S.ABCD\) có đáy là hình thang có \(AD//BC,M\) là điểm di động trong hình thang \(ABCD.\) Qua \(M\) kẻ đường thẳng song song với \(SA\) và \(SB\) lần lượt cắt các mặt \(\left( {SBC} \right)\) và \(\left( {SAD} \right)\) tại \(N\) và \(P.\) Cho \(SA = a,SB = b.\) Tìm giá trị lớn nhất của biểu thức \(T = M{N^2}.MP.\)

Xem đáp án » 25/04/2022 1,935

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn