Câu hỏi:

25/04/2022 230

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng 1. Cắt hình lập phương bằng một mặt phẳng đi qua đường chéo \(BD'\). Tìm giá trị nhỏ nhất của diện tích thiết diện thu được.

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng 1. Cắt hình lập phương bằng một mặt phẳng đi qua đường chéo \(BD'\). Tìm giá trị nhỏ nhất của diện tích thiết diện thu được. (ảnh 1)

Gọi \(O\) là trung điểm \(BD'.\)

Gọi \(E,F\) là tâm hình vuông \(ABB'A'\) và \(DCC'D'.\)

Giả sử thiết diện qua \(BD'\) và cắt \[AD\] trung điểm \(M\) của \(AD.\)

Trong \(\left( {ADC'B'} \right)\) gọi \(N = B'C' \cap OM \Rightarrow N\) là trung điểm \(B'C'.\)

\( \Rightarrow MN = AB' = BC' = \sqrt 2 .\)

Tứ giác \(BMD'N\) là hình thoi \(\left( {MB = MD' = NB = ND' = \frac{{\sqrt 5 }}{2}} \right).\)

\({S_{BMD'N}} = \frac{1}{2}MN.BD' = \frac{{\sqrt 6 }}{2}.\)

Ta chứng minh \(M\) là trung điểm của \(AD\) thì diện tích thiết diện đạt giá trị nhỏ nhất.

Lấy \(M'\) bất kỳ trên \(AD.\) Kẻ \(M'H \bot EF,M'K \bot BD'.\)

Tứ giác \(MM'HO\) là hình bình hành \( \Rightarrow \left\{ \begin{array}{l}M'H = MO\\M'H//MO\end{array} \right..\)

Mà \(MO \bot \left( {A'BCD'} \right) \Rightarrow M'H \bot \left( {A'BCD'} \right).\)

\(\Delta M'HK\) vuông tại \(H \Rightarrow M'K \ge M'H = MO\)

\(\left\{ \begin{array}{l}{S_{BM'D'N'}} = 2{S_{\Delta M'BD'}} = 2.\frac{1}{2}M'K.BD' = \sqrt 3 M'K\\{S_{BMD'N}} = 2{S_{\Delta MBD}} = 2.\frac{1}{2}MO.BD' = \sqrt 3 MO\end{array} \right.\)

\( \Rightarrow {S_{BM'D'N'}} \ge {S_{BMD'N}}.\)

Dấu “=” xảy ra \( \Leftrightarrow M' \equiv M.\)

Đáp án B.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm tất cả các giá trị của \(m\) để hàm số \(y = \left( {m - 1} \right){x^3} - 3\left( {m - 1} \right){x^2} + 3x + 2\) đồng biến trên \(\mathbb{R}.\)

Xem đáp án » 25/04/2022 26,862

Câu 2:

Cho biểu thức \(P = \sqrt[4]{{x\sqrt[3]{{{x^2}.\sqrt[3]{x}}}}},x >0.\) Mệnh đề nào dưới đây là đúng?

Xem đáp án » 25/04/2022 12,471

Câu 3:

Cho \(a,b,c\) là các số thực khác 0 thỏa mãn \({4^a} = {25^b} = {10^c}.\) Tính giá trị biểu thức \(A = \frac{c}{a} + \frac{c}{b}.\)

Xem đáp án » 25/04/2022 10,436

Câu 4:

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R},\) có \(f'\left( x \right) = {\left( {x + 2} \right)^2}{\left( {x - 2} \right)^3}\left( { - x + 5} \right).\) Số điểm cực trị của hàm số \(y = f\left( x \right)\) là

Xem đáp án » 25/04/2022 4,960

Câu 5:

Cho hàm số \(f\left( x \right)\) có đại hàm \(f'\left( x \right) = {\left( {x + 1} \right)^2}\left( {{x^2} - 4x} \right)\). Có bao nhiêu giá trị nguyên dương của tham số \(m\) để hàm số \(g\left( x \right) = f\left( {2{x^2} - 12x + m} \right)\) có đúng 5 điểm cực trị?

Xem đáp án » 25/04/2022 4,756

Câu 6:

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật có \(AB = a;BC = 2a.\) Hai mặt phẳng \(\left( {SAB} \right)\) và mặt phẳng \(\left( {SAD} \right)\) cùng vuông góc với mặt phẳng đáy, cạnh \(SC\) hợp với mặt đáy góc \({60^0}.\) Tính thể tích khối chóp \(S.ABCD\) theo \(a.\)

Xem đáp án » 25/04/2022 3,346

Câu 7:

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a.\) Số đo góc giữa \(\left( {BA'C} \right)\) và \(\left( {DA'C} \right).\)

Xem đáp án » 25/04/2022 3,067