Câu hỏi:
25/04/2022 751Cho lăng trụ \(ABC.A'B'C'\) có đáy là tam giác đều và \(A'A = A'B = A'C.\) Biết rằng các cạnh bên của lăng trụ tạo với đáy một góc \({60^0}\) và khoảng cách giữa đường thẳng \(AA'\) và mặt phẳng \(\left( {BCC'B'} \right)\) bằng 1. Tính thể tích khối lăng trụ đã cho.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
* Gọi \(H\) là trung điểm \(BC,O\) là tâm đường tròn ngoại tiếp tam giác \(ABC.\)
Vì \(A'A = A'B = A'C\) nên hình chiếu của \(A'\) lên \(\left( {ABC} \right)\) là điểm \(O\) hay \(A'O \bot \left( {ABC} \right).\)
Gọi \(E\) là điểm sao cho \(BCAE\) là hình bình hành.
\( \Leftrightarrow d\left( {AA';\left( {BCC'B'} \right)} \right) = d\left( {\left( {AA'E} \right);\left( {BCC'B'} \right)} \right) = d\left( {H;\left( {AA'E} \right)} \right).\)
* Gọi \(K\) là hình chiếu của \(O\) lên \(AA'.\)
Vì \(\left\{ \begin{array}{l}A'O \bot AE\\A'O \bot AE\end{array} \right. \Rightarrow \left( {AA'O} \right) \bot AE \Rightarrow OK \bot AE\)
\( \Rightarrow OK \bot \left( {AA'E} \right).\)
* Ta có: \(\frac{{d\left( {O;\left( {A'AE} \right)} \right)}}{{d\left( {H;\left( {A'AE} \right)} \right)}} = \frac{{OK}}{{d\left( {H;\left( {A'AE} \right)} \right)}} = \frac{{AO}}{{AH}} = \frac{2}{3} \Rightarrow OK = \frac{2}{3}.\)
* Góc giữa \(AA'\) và \(\left( {ABC} \right)\) là góc giữa \(AA'\) và \(AO\) bằng \({60^0}.\)
\( \Rightarrow AO = \frac{{OK}}{{\sin {{60}^0}}} = \frac{4}{{3\sqrt 3 }} = \frac{{AB\sqrt 3 }}{3} \Rightarrow AB = \frac{4}{3}.\)
* \(A'O = AO.\tan {60^0} = \frac{4}{3}.\)
Vậy \(V = A'O.{S_{ABC}} = \frac{4}{3}.\frac{{{{\left( {\frac{4}{3}} \right)}^2}\sqrt 3 }}{4} = \frac{{16\sqrt 3 }}{{27}}.\)
Đáp án B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm tất cả các giá trị của \(m\) để hàm số \(y = \left( {m - 1} \right){x^3} - 3\left( {m - 1} \right){x^2} + 3x + 2\) đồng biến trên \(\mathbb{R}.\)
Câu 2:
Cho biểu thức \(P = \sqrt[4]{{x\sqrt[3]{{{x^2}.\sqrt[3]{x}}}}},x >0.\) Mệnh đề nào dưới đây là đúng?
Câu 3:
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R},\) có \(f'\left( x \right) = {\left( {x + 2} \right)^2}{\left( {x - 2} \right)^3}\left( { - x + 5} \right).\) Số điểm cực trị của hàm số \(y = f\left( x \right)\) là
Câu 4:
Cho hàm số \(f\left( x \right)\) có đại hàm \(f'\left( x \right) = {\left( {x + 1} \right)^2}\left( {{x^2} - 4x} \right)\). Có bao nhiêu giá trị nguyên dương của tham số \(m\) để hàm số \(g\left( x \right) = f\left( {2{x^2} - 12x + m} \right)\) có đúng 5 điểm cực trị?
Câu 5:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật có \(AB = a;BC = 2a.\) Hai mặt phẳng \(\left( {SAB} \right)\) và mặt phẳng \(\left( {SAD} \right)\) cùng vuông góc với mặt phẳng đáy, cạnh \(SC\) hợp với mặt đáy góc \({60^0}.\) Tính thể tích khối chóp \(S.ABCD\) theo \(a.\)
Câu 6:
Cho \(a,b,c\) là các số thực khác 0 thỏa mãn \({4^a} = {25^b} = {10^c}.\) Tính giá trị biểu thức \(A = \frac{c}{a} + \frac{c}{b}.\)
Câu 7:
Cho hình chóp \(S.ABCD\) có đáy là hình thang có \(AD//BC,M\) là điểm di động trong hình thang \(ABCD.\) Qua \(M\) kẻ đường thẳng song song với \(SA\) và \(SB\) lần lượt cắt các mặt \(\left( {SBC} \right)\) và \(\left( {SAD} \right)\) tại \(N\) và \(P.\) Cho \(SA = a,SB = b.\) Tìm giá trị lớn nhất của biểu thức \(T = M{N^2}.MP.\)
về câu hỏi!