Câu hỏi:

25/04/2022 1,660 Lưu

Cho lăng trụ \(ABC.A'B'C'\) có đáy là tam giác đều và \(A'A = A'B = A'C.\) Biết rằng các cạnh bên của lăng trụ tạo với đáy một góc \({60^0}\) và khoảng cách giữa đường thẳng \(AA'\) và mặt phẳng \(\left( {BCC'B'} \right)\) bằng 1. Tính thể tích khối lăng trụ đã cho.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho lăng trụ \(ABC.A'B'C'\) có đáy là tam giác đều và \(A'A = A'B = A'C.\) Biết rằng các cạnh bên của lăng trụ tạo với đáy một góc \({60^0}\) và khoảng cách giữa đường thẳng \(AA'\) và mặt ph (ảnh 1)

* Gọi \(H\) là trung điểm \(BC,O\) là tâm đường tròn ngoại tiếp tam giác \(ABC.\)

Vì \(A'A = A'B = A'C\) nên hình chiếu của \(A'\) lên \(\left( {ABC} \right)\) là điểm \(O\) hay \(A'O \bot \left( {ABC} \right).\)

Gọi \(E\) là điểm sao cho \(BCAE\) là hình bình hành.

\( \Leftrightarrow d\left( {AA';\left( {BCC'B'} \right)} \right) = d\left( {\left( {AA'E} \right);\left( {BCC'B'} \right)} \right) = d\left( {H;\left( {AA'E} \right)} \right).\)

* Gọi \(K\) là hình chiếu của \(O\) lên \(AA'.\)

Vì \(\left\{ \begin{array}{l}A'O \bot AE\\A'O \bot AE\end{array} \right. \Rightarrow \left( {AA'O} \right) \bot AE \Rightarrow OK \bot AE\)

\( \Rightarrow OK \bot \left( {AA'E} \right).\)

* Ta có: \(\frac{{d\left( {O;\left( {A'AE} \right)} \right)}}{{d\left( {H;\left( {A'AE} \right)} \right)}} = \frac{{OK}}{{d\left( {H;\left( {A'AE} \right)} \right)}} = \frac{{AO}}{{AH}} = \frac{2}{3} \Rightarrow OK = \frac{2}{3}.\)

* Góc giữa \(AA'\) và \(\left( {ABC} \right)\) là góc giữa \(AA'\) và \(AO\) bằng \({60^0}.\)

\( \Rightarrow AO = \frac{{OK}}{{\sin {{60}^0}}} = \frac{4}{{3\sqrt 3 }} = \frac{{AB\sqrt 3 }}{3} \Rightarrow AB = \frac{4}{3}.\)

* \(A'O = AO.\tan {60^0} = \frac{4}{3}.\)

Vậy \(V = A'O.{S_{ABC}} = \frac{4}{3}.\frac{{{{\left( {\frac{4}{3}} \right)}^2}\sqrt 3 }}{4} = \frac{{16\sqrt 3 }}{{27}}.\)

Đáp án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tập xác định \(D = \mathbb{R}\)

Ta có: \(y' = 3\left( {m - 1} \right){x^2} - 6\left( {m - 1} \right)x + 3.\)

Trường hợp 1: \(m - 1 = 0 \Leftrightarrow m = 1 \Rightarrow y = 3x + 2 \Rightarrow \) Hàm số đồng biến trên \(\mathbb{R}.\)

Trường hợp 2: \(m - 1 \ne 0 \Rightarrow y' \ge 0{\rm{ }}\forall x \in \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}m - 1 >0\\\Delta ' \le 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}m >1\\9{\left( {m - 1} \right)^2} - 9\left( {m - 1} \right) \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m >1\\1 \le m \le 2\end{array} \right. \Leftrightarrow 1 < m \le 2.\)

Kết hợp hai trường hợp trên suy ra \(1 < m \le 2.\)

Đáp án D

Câu 2

Lời giải

\(P = \sqrt[4]{{x\sqrt[3]{{{x^2}.\sqrt {{x^3}} }}}} = \sqrt[4]{{x\sqrt[3]{{{x^2}.{x^{\frac{3}{2}}}}}}} = \sqrt[4]{{x\sqrt[3]{{{x^{\frac{7}{2}}}}}}} = \sqrt[4]{{x.{x^{\frac{7}{6}}}}} = \sqrt[4]{{{x^{\frac{{13}}{6}}}}} = {x^{\frac{{13}}{{24}}}}\)

Đáp án C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP