Câu hỏi:

25/04/2022 1,950 Lưu

Cho parabol \(\left( P \right):y = - {x^2}\) và đồ thị hàm số \(y = a{x^3} + b{x^2} + cx - 2\) có đồ thị như hình vẽ. Tính giá trị của biểu thức \(P = a - 3b - 5c.\)

Cho parabol \(\left( P \right):y =  - {x^2}\) và đồ thị hàm số \(y = a{x^3} + b{x^2} + cx - 2\) có đồ thị như hình vẽ. Tính giá trị của biểu thức \(P = a - 3b - 5c.\) (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

* Xét phương trình hoành độ giao điểm:

\(a{x^3} + b{x^2} + cx - 2 = - {x^2} \Leftrightarrow a{x^3} + \left( {b + 1} \right){x^2} + cx - 2 = 0\)

Từ đồ thị ta thấy hai đồ thị hàm số cắt nhau tại điểm có hoành độ \(x = 1;x = - 1;x = - 2\) nên ta có hệ phương trình sau:

\(\left\{ \begin{array}{l} - 4a + 2b - c = - 1\\a - b + c = - 1\\a + b + c = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 1\\c = - 1\end{array} \right.\)

Vậy \(P = a - 3b - 5c = 3.\)

Đáp án A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tập xác định \(D = \mathbb{R}\)

Ta có: \(y' = 3\left( {m - 1} \right){x^2} - 6\left( {m - 1} \right)x + 3.\)

Trường hợp 1: \(m - 1 = 0 \Leftrightarrow m = 1 \Rightarrow y = 3x + 2 \Rightarrow \) Hàm số đồng biến trên \(\mathbb{R}.\)

Trường hợp 2: \(m - 1 \ne 0 \Rightarrow y' \ge 0{\rm{ }}\forall x \in \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}m - 1 >0\\\Delta ' \le 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}m >1\\9{\left( {m - 1} \right)^2} - 9\left( {m - 1} \right) \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m >1\\1 \le m \le 2\end{array} \right. \Leftrightarrow 1 < m \le 2.\)

Kết hợp hai trường hợp trên suy ra \(1 < m \le 2.\)

Đáp án D

Câu 2

Lời giải

\(P = \sqrt[4]{{x\sqrt[3]{{{x^2}.\sqrt {{x^3}} }}}} = \sqrt[4]{{x\sqrt[3]{{{x^2}.{x^{\frac{3}{2}}}}}}} = \sqrt[4]{{x\sqrt[3]{{{x^{\frac{7}{2}}}}}}} = \sqrt[4]{{x.{x^{\frac{7}{6}}}}} = \sqrt[4]{{{x^{\frac{{13}}{6}}}}} = {x^{\frac{{13}}{{24}}}}\)

Đáp án C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP