Câu hỏi:

25/04/2022 504 Lưu

Cho các số thực dương \(x,y,z\) và thỏa mãn \(x + y + z = 3.\) Biểu thức \(P = {x^4} + {y^4} + 8{z^4}\) đạt GTNN bằng \(\frac{a}{b},\) trong đó \(a,b\) là các số tự nhiên dương, \(\frac{a}{b}\) là phân số tối giản. Tính \(a - b.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\[\begin{array}{l}9 = {(x + y + \frac{1}{{\sqrt 2 }}.\sqrt 2 .z)^2} \le \frac{5}{2}({x^2} + {y^2} + 2{z^2}) = \frac{5}{2}({x^2} + {y^2} + \frac{1}{{\sqrt 2 }}.2.\sqrt 2 .{z^2}) \le \frac{5}{2}.\sqrt {\frac{5}{2}.({x^4} + {y^4} + 8{z^4})} \\ = >{x^4} + {y^4} + 8{z^4} \ge {(9:\frac{5}{2})^2}:\frac{5}{2} = \frac{{648}}{{125}}\end{array}\]

Vậy GTNN của P là \[\frac{a}{b} = \frac{{648}}{{125}} = >a - b = 523\].

Đáp án B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tập xác định \(D = \mathbb{R}\)

Ta có: \(y' = 3\left( {m - 1} \right){x^2} - 6\left( {m - 1} \right)x + 3.\)

Trường hợp 1: \(m - 1 = 0 \Leftrightarrow m = 1 \Rightarrow y = 3x + 2 \Rightarrow \) Hàm số đồng biến trên \(\mathbb{R}.\)

Trường hợp 2: \(m - 1 \ne 0 \Rightarrow y' \ge 0{\rm{ }}\forall x \in \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}m - 1 >0\\\Delta ' \le 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}m >1\\9{\left( {m - 1} \right)^2} - 9\left( {m - 1} \right) \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m >1\\1 \le m \le 2\end{array} \right. \Leftrightarrow 1 < m \le 2.\)

Kết hợp hai trường hợp trên suy ra \(1 < m \le 2.\)

Đáp án D

Câu 2

Lời giải

\(P = \sqrt[4]{{x\sqrt[3]{{{x^2}.\sqrt {{x^3}} }}}} = \sqrt[4]{{x\sqrt[3]{{{x^2}.{x^{\frac{3}{2}}}}}}} = \sqrt[4]{{x\sqrt[3]{{{x^{\frac{7}{2}}}}}}} = \sqrt[4]{{x.{x^{\frac{7}{6}}}}} = \sqrt[4]{{{x^{\frac{{13}}{6}}}}} = {x^{\frac{{13}}{{24}}}}\)

Đáp án C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP