Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \(A\) và \(D\) với \(AD = DC = a,AB = 2a.\) Hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAD} \right)\)cùng vuông góc với đáy. Góc giữa \(SC\) và mặt đáy bằng \({60^0}.\) Tính khoảng cách giữa hai đường thẳng \(AC\) và \(SB.\)
Quảng cáo
Trả lời:
Gọi \(M\) là trung điểm \(AB,\) dễ thấy \(ADCM\) là hình vuông \( \Rightarrow MC = AM = \frac{1}{2}AB\)
\( \Rightarrow \Delta ACB\) là tam giác vuông tại \(C\)
Gọi \(N\) đối xứng với \(C\) qua \(M \Rightarrow ACBN\) là hình chữ nhật
\(AC//BN \Rightarrow AC//\left( {SBN} \right) \Rightarrow d\left( {AC,SB} \right) = d\left( {A,\left( {SBN} \right)} \right) = \frac{{3{V_{S.ABN}}}}{{{S_{\Delta SBN}}}}.\)
Tính \({V_{S.ABN}} = \frac{1}{3}SA.{S_{\Delta ABN}} = \frac{1}{6}SA.AN.NB = \frac{1}{6}SA.BC.AC\)
\(SA = AC.\tan {60^0} = a\sqrt 2 .\sqrt 3 = a\sqrt 6 ;BC = \sqrt {A{B^2} - A{C^2}} = \sqrt {4{a^2} - 2{a^2}} = a\sqrt 2 \)
Như vậy: \({V_{S.ABN}} = \frac{1}{6}.a\sqrt 6 .a\sqrt 2 .a\sqrt 2 = \frac{{{a^3}\sqrt 6 }}{3}\)
Ta có: \(SN = \sqrt {S{A^2} + A{N^2}} = \sqrt {6{a^2} + 2{a^2}} = 2\sqrt 2 a\)
Xét \(\Delta SBN\) vuông tại \(N,\left( {BN \bot AN;BN \bot SA \Rightarrow BN \bot SN} \right)\)
Ta có: \({S_{SBN}} = \frac{1}{2}SN.NB = \frac{1}{2}.2\sqrt 2 a.a\sqrt 2 = 2{a^2}\)
Suy ra \(d\left( {AC,SB} \right) = d\left( {A,\left( {SBN} \right)} \right) = \frac{{3{V_{S.ABN}}}}{{{S_{\Delta ABN}}}} = \frac{{3.\frac{{{a^3}\sqrt 6 }}{3}}}{{2{a^2}}} = \frac{{a\sqrt 6 }}{2}.\)
Đáp án C
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Tập xác định \(D = \mathbb{R}\)
Ta có: \(y' = 3\left( {m - 1} \right){x^2} - 6\left( {m - 1} \right)x + 3.\)
Trường hợp 1: \(m - 1 = 0 \Leftrightarrow m = 1 \Rightarrow y = 3x + 2 \Rightarrow \) Hàm số đồng biến trên \(\mathbb{R}.\)
Trường hợp 2: \(m - 1 \ne 0 \Rightarrow y' \ge 0{\rm{ }}\forall x \in \mathbb{R} \Leftrightarrow \left\{ \begin{array}{l}m - 1 >0\\\Delta ' \le 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}m >1\\9{\left( {m - 1} \right)^2} - 9\left( {m - 1} \right) \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m >1\\1 \le m \le 2\end{array} \right. \Leftrightarrow 1 < m \le 2.\)
Kết hợp hai trường hợp trên suy ra \(1 < m \le 2.\)
Đáp án D
Lời giải
\(P = \sqrt[4]{{x\sqrt[3]{{{x^2}.\sqrt {{x^3}} }}}} = \sqrt[4]{{x\sqrt[3]{{{x^2}.{x^{\frac{3}{2}}}}}}} = \sqrt[4]{{x\sqrt[3]{{{x^{\frac{7}{2}}}}}}} = \sqrt[4]{{x.{x^{\frac{7}{6}}}}} = \sqrt[4]{{{x^{\frac{{13}}{6}}}}} = {x^{\frac{{13}}{{24}}}}\)
Đáp án C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.