Câu hỏi:

25/04/2022 466

Hàm số \(y = f\left( x \right)\) có đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ

Hàm số \(y = f\left( x \right)\) có đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽHàm số \(y = f\left( {1 - x} \right) + \frac{{{x^2}}}{2} - x\) nghịch biến trên khoảng (ảnh 1)

Hàm số \(y = f\left( {1 - x} \right) + \frac{{{x^2}}}{2} - x\) nghịch biến trên khoảng

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có \(y = f\left( {1 - x} \right) + \frac{{{x^3}}}{2} - x \Rightarrow y' = - f'\left( {1 - x} \right) + x - 1.\)

Đặt \(t = 1 - x.\) Khi đó ta có \(y' = - f'\left( t \right) - t = 0 \Leftrightarrow f'\left( t \right) = - t\)

Vẽ đồ thị hàm số \(y = - t\) và \(y = f'\left( t \right)\) trên cùng mặt phẳng tọa đọ ta thấy:

\(f'\left( t \right) = - t \Leftrightarrow t = - 3,t = 1,t = 3.\)

Bảng xét dấu

Hàm số \(y = f\left( x \right)\) có đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽHàm số \(y = f\left( {1 - x} \right) + \frac{{{x^2}}}{2} - x\) nghịch biến trên khoảng (ảnh 2)
Dựa vào bảng xét dấu, ta thấy hàm số nghịch biến trên các khoảng

\(\left[ \begin{array}{l} - 3 < t < 1\\t >3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - 3 < 1 - x < 1\\1 - x >3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}0 < x < 4\\x < - 2\end{array} \right..\)

Ta thấy \(\left( {1;3} \right) \subset \left( {0;4} \right).\)

Đáp án A.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm tất cả các giá trị của \(m\) để hàm số \(y = \left( {m - 1} \right){x^3} - 3\left( {m - 1} \right){x^2} + 3x + 2\) đồng biến trên \(\mathbb{R}.\)

Xem đáp án » 25/04/2022 27,059

Câu 2:

Cho biểu thức \(P = \sqrt[4]{{x\sqrt[3]{{{x^2}.\sqrt[3]{x}}}}},x >0.\) Mệnh đề nào dưới đây là đúng?

Xem đáp án » 25/04/2022 12,773

Câu 3:

Cho \(a,b,c\) là các số thực khác 0 thỏa mãn \({4^a} = {25^b} = {10^c}.\) Tính giá trị biểu thức \(A = \frac{c}{a} + \frac{c}{b}.\)

Xem đáp án » 25/04/2022 10,891

Câu 4:

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R},\) có \(f'\left( x \right) = {\left( {x + 2} \right)^2}{\left( {x - 2} \right)^3}\left( { - x + 5} \right).\) Số điểm cực trị của hàm số \(y = f\left( x \right)\) là

Xem đáp án » 25/04/2022 4,981

Câu 5:

Cho hàm số \(f\left( x \right)\) có đại hàm \(f'\left( x \right) = {\left( {x + 1} \right)^2}\left( {{x^2} - 4x} \right)\). Có bao nhiêu giá trị nguyên dương của tham số \(m\) để hàm số \(g\left( x \right) = f\left( {2{x^2} - 12x + m} \right)\) có đúng 5 điểm cực trị?

Xem đáp án » 25/04/2022 4,825

Câu 6:

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a.\) Số đo góc giữa \(\left( {BA'C} \right)\) và \(\left( {DA'C} \right).\)

Xem đáp án » 25/04/2022 3,488

Câu 7:

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật có \(AB = a;BC = 2a.\) Hai mặt phẳng \(\left( {SAB} \right)\) và mặt phẳng \(\left( {SAD} \right)\) cùng vuông góc với mặt phẳng đáy, cạnh \(SC\) hợp với mặt đáy góc \({60^0}.\) Tính thể tích khối chóp \(S.ABCD\) theo \(a.\)

Xem đáp án » 25/04/2022 3,483
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua