Câu hỏi:
25/04/2022 275Cho khối lăng trụ \(ABC.A'B'C'\), khoảng cách từ \(C\) đến \(BB'\) bằng \(2a,\) khoảng cách từ \(A\) đến các đường thẳng \(BB'\) và \(CC'\) lần lượt bằng \(a\) và \(a\sqrt 3 \), hình chiếu vuông góc của \(A\) lên mặt phẳng\(\left( {A'B'C'} \right)\) là trung điểm \(M\) của \(B'C'\) và \(A'M = \frac{{2a\sqrt 3 }}{3}.\) Thể tích khối lăng trụ đã cho bằng
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Gọi \(E,F\) lần lượt là hình chiếu vuông góc của \(A\) lên \(BB',CC' \Rightarrow AE = a,AF = a\sqrt 3 .\)
Ta có \(\left\{ \begin{array}{l}BB' \bot AE\\BB' \bot AF\end{array} \right. \Rightarrow BB' \Rightarrow \left( {AEF} \right) \Rightarrow BB' \bot EF \Rightarrow EF = d\left( {C,BB'} \right) = 2a.\)
Suy ra \(\Delta AEF\) vuông tại \(A.\)
Gọi \(K = MM' \cap EF \Rightarrow K\) là trung điểm của \(EF \Rightarrow AK = \frac{1}{2}EF = a.\)
Lại có \(MM'//BB' \Rightarrow MM' \bot \left( {AEF} \right) \Rightarrow MM' \bot AK.\)
Suy ra \(\frac{1}{{A{K^2}}} = \frac{1}{{A{M^2}}} + \frac{1}{{AM{'^2}}} \Rightarrow \frac{1}{{{a^2}}} = \frac{1}{{A{M^2}}} + \frac{{3{a^2}}}{4} \Rightarrow AM = 2a.\)
Gọi \(H\) là hình chiếu vuông góc của \(A\) trên \(EF \Rightarrow AH \bot \left( {BCC'B'} \right).\)
Ta có \(\frac{1}{{A{H^2}}} = \frac{1}{{A{E^2}}} + \frac{1}{{A{F^2}}} \Rightarrow AH = \frac{{a\sqrt 3 }}{2},M'{M^2} = A{M^2} + AM{'^2} = \frac{{16a}}{3} \Rightarrow MM' = \frac{{4\sqrt 3 a}}{3}.\)
Ta cũng có \({S_{BCC'B'}} = d\left( {C,BB'} \right).BB' = \frac{{8\sqrt 3 {a^2}}}{3}.\)
Suy ra \({V_{ABC.A'B'C'}} = \frac{3}{2}{V_{A.BCC'B'}} = \frac{3}{2}.\frac{1}{3}.AH.{S_{BCC'B'}} = 2{a^3}.\)
Đáp án C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm tất cả các giá trị của \(m\) để hàm số \(y = \left( {m - 1} \right){x^3} - 3\left( {m - 1} \right){x^2} + 3x + 2\) đồng biến trên \(\mathbb{R}.\)
Câu 2:
Cho biểu thức \(P = \sqrt[4]{{x\sqrt[3]{{{x^2}.\sqrt[3]{x}}}}},x >0.\) Mệnh đề nào dưới đây là đúng?
Câu 3:
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R},\) có \(f'\left( x \right) = {\left( {x + 2} \right)^2}{\left( {x - 2} \right)^3}\left( { - x + 5} \right).\) Số điểm cực trị của hàm số \(y = f\left( x \right)\) là
Câu 4:
Cho hàm số \(f\left( x \right)\) có đại hàm \(f'\left( x \right) = {\left( {x + 1} \right)^2}\left( {{x^2} - 4x} \right)\). Có bao nhiêu giá trị nguyên dương của tham số \(m\) để hàm số \(g\left( x \right) = f\left( {2{x^2} - 12x + m} \right)\) có đúng 5 điểm cực trị?
Câu 5:
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật có \(AB = a;BC = 2a.\) Hai mặt phẳng \(\left( {SAB} \right)\) và mặt phẳng \(\left( {SAD} \right)\) cùng vuông góc với mặt phẳng đáy, cạnh \(SC\) hợp với mặt đáy góc \({60^0}.\) Tính thể tích khối chóp \(S.ABCD\) theo \(a.\)
Câu 6:
Cho \(a,b,c\) là các số thực khác 0 thỏa mãn \({4^a} = {25^b} = {10^c}.\) Tính giá trị biểu thức \(A = \frac{c}{a} + \frac{c}{b}.\)
Câu 7:
Cho hình chóp \(S.ABCD\) có đáy là hình thang có \(AD//BC,M\) là điểm di động trong hình thang \(ABCD.\) Qua \(M\) kẻ đường thẳng song song với \(SA\) và \(SB\) lần lượt cắt các mặt \(\left( {SBC} \right)\) và \(\left( {SAD} \right)\) tại \(N\) và \(P.\) Cho \(SA = a,SB = b.\) Tìm giá trị lớn nhất của biểu thức \(T = M{N^2}.MP.\)
về câu hỏi!