Câu hỏi:

13/04/2022 5,629

Với mức tiêu thụ thức ăn của một trang trại \[A\] không đổi như dự định thì lượng thức ăn dự trữ đủ dùng cho \(100\) ngày. Nhưng thực tế, kể từ ngày thứ hai trở đi lượng thức ăn của trang trại đã tăng thêm \(4\% \) so với ngày trước đó. Hỏi lượng thức ăn mà trang trại \[A\] đã dự trữ đủ dùng cho bao nhiêu ngày ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn đáp án C

Gọi \(a\) là lượng thức ăn cần dùng mỗi ngày theo dự kiến, \(n\) là số ngày thức tế hết lượng thức

ăn đã chuẩn bị.

Khi đó lượng thức ăn trang trại đã chuẩn bị là: \(100a\).

Vì \(n\) là số ngày thực tế nên lượng thức ăn đã tiêu thụ sẽ là

\(a + a.1,04 + a.\left( {1,{{04}^2}} \right) + 1.{\left( {1,04} \right)^3} + ... + a.{\left( {1,04} \right)^{n - 1}}\).

Ta có phương trình sau:

\(a + a.1,04 + a.\left( {1,{{04}^2}} \right) + 1.{\left( {1,04} \right)^3} + ... + a.{\left( {1,04} \right)^{n - 1}} = 100.a\)

\( \Leftrightarrow a\left( {1 + 1,04 + {{1.04}^2} + ... + {{1.04}^{n - 1}}} \right) = 100.a\)

\( \Leftrightarrow a\frac{{1 - {{\left( {1,04} \right)}^{n - 1}}}}{{1 - 1,04}} = 100.a \Leftrightarrow {\left( {1,04} \right)^{n - 1}} = 5 \Leftrightarrow n \approx 41,035 >41.\)

Vậy lượng thức ăn đủ dùng cho \(41\) ngày.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn đáp án A

Hàm số \(y = {\log _3}\left( {x - 1} \right)\) có nghĩa khi \(x - 1 >0 \Rightarrow x >1\).

Vậy tập xác định của hàm số \(y = {\log _3}\left( {x - 1} \right)\) là \(\left( {1; + \infty } \right)\).

Câu 2

Lời giải

Chọn đáp án D

Cho tứ diện đều ABCD .Cosin của góc giữa hai mặt phẳng (ABC) và (DBC)  (ảnh 1)

Gọi tứ diện \[ABCD\] là tứ diện đều cạnh a.

Gọi \[H\] là tâm của tam giác\[ABC\]. Khi đó \(DH \bot \left( {ABC} \right)\) tại \[H\].

Gọi \(I\) là trung điểm của \[BC\]. Khi đó góc giữa mặt phẳng \(\left( {DBC} \right)\) và \(\left( {ABC} \right)\) là góc \(\widehat {DIH}\)

Ta có \(\cos \widehat {\left( {\left( {ABC} \right),\left( {DBC} \right)} \right)} = \cos \widehat {DIH} = \frac{{IH}}{{ID}}\).

Tam giác \[ABC\] đều \( \Rightarrow IH = \frac{1}{3}IA = \frac{1}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{6}\).

Tam giác \[DBC\] đều \( \Rightarrow ID = \frac{{a\sqrt 3 }}{2} \Rightarrow \cos \widehat {\left( {\left( {ABC} \right),DBC} \right)} = \frac{1}{3}\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP