Câu hỏi:
15/04/2022 3,803Cho hình chóp \(S.ABC\) có đáy là tam giác đều cạnh \(4a\), \(SA\) vuông góc với mặt phẳng đáy và \(SA = a\sqrt 3 \) (minh họa như hình bên).
Gọi \(I\) là trung điểm của \(AC\). Khoảng cách giữa hai đường thẳng \(SI\) và \(AB\) bằng
Câu hỏi trong đề: Bộ đề minh họa môn Toán THPT Quốc gia năm 2022 (30 đề) !!
Quảng cáo
Trả lời:
Chọn đáp án D
Gọi \(K\) là trung điểm của \(BC\).
Suy ra: \[d\left( {SI,AB} \right) = d\left( {AB,\left( {SIK} \right)} \right) = d\left( {A,\left( {SIK} \right)} \right)\].
Trong mặt phẳng \(\left( {ABC} \right)\) kẻ \(AD\) vuông góc với \(IK\).
Trong mặt phẳng \(\left( {SAD} \right)\) kẻ \(AH\) vuông góc với \(SD\).
Ta có \[IK \bot \left( {SAD} \right)\] vì \[IK \bot AD\] và \[IK \bot SA\].
Suy ra \[IK \bot AH\].
Vậy \[\left\{ \begin{array}{l}AH \bot SD\\AH \bot IK\end{array} \right. \Rightarrow AH \bot \left( {SIK} \right)\]. Vậy \(AH = d\left( {A,\left( {SIK} \right)} \right)\).
Gọi \(M\) là trung điểm của \(IK\), suy ra \[AD = CM = a\sqrt 3 \] (tam giác \(CIK\) đều cạnh \(2a\)).
Ta có \[\frac{1}{{A{H^2}}} = \frac{1}{{A{S^2}}} + \frac{1}{{A{D^2}}} = \frac{1}{{3{a^2}}} + \frac{1}{{3{a^2}}} \Rightarrow AH = \frac{{a\sqrt 6 }}{2}\].
Suy ra \[d\left( {SI,AB} \right) = \frac{{a\sqrt 6 }}{2}\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
Đã bán 986
Đã bán 1,1k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho cấp số cộng \(({u_n})\)có \({u_1} = 4;\,{u_2} = 1\). Giá trị của \({u_{10}}\)bằng:
Câu 2:
Cho khối nón có bán kính \[R = 3\], đường sinh \[l = 5\]. Thể tích khối nón đã cho bằng
Câu 3:
Câu 4:
Cho khối chóp có thể tích \[V = 10\] và chiều cao \[h = 6\]. Diện tích đáy của khối chóp đã cho bằng
Câu 5:
Diện tích S của hình phẳng giới hạn bởi các đường \(y = 2{x^2} + 3x + 1\,,\,y = {x^3} + 1\,\) được tính bởi công thức nào dưới đây ?
Câu 6:
Cho hình chóp \(S.ABCD\) có \[SA\,\]vuông góc với mặt phẳng \(\left( {ABCD} \right)\), \(SA = \frac{{a\sqrt 2 }}{2}\), đáy \(ABCD\) là hình thang vuông tại \(A\) và \(D\) có \(AB = 2AD = 2DC = a\) (Hình vẽ minh họa). Góc giữa hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {ABCD} \right)\) bằng
Câu 7:
Số giao điểm của đồ thị hàm số \(y = {x^4} + 3{x^2} - 4\) với trục hoành là
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 5)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận