Câu hỏi:

15/04/2022 2,080

Cho hình chóp \(S.ABC\) có đáy là tam giác đều cạnh \(4a\), \(SA\) vuông góc với mặt phẳng đáy và \(SA = a\sqrt 3 \) (minh họa như hình bên).

Cho hình chóp S.ABCD có đáy là tam giác đều cạnh 4a, SA vuông góc với mặt phẳng (ảnh 1)

Gọi \(I\) là trung điểm của \(AC\). Khoảng cách giữa hai đường thẳng \(SI\) và \(AB\) bằng

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn đáp án D

Cho hình chóp S.ABCD có đáy là tam giác đều cạnh 4a, SA vuông góc với mặt phẳng (ảnh 2)

Gọi \(K\) là trung điểm của \(BC\).

Suy ra: \[d\left( {SI,AB} \right) = d\left( {AB,\left( {SIK} \right)} \right) = d\left( {A,\left( {SIK} \right)} \right)\].

Trong mặt phẳng \(\left( {ABC} \right)\) kẻ \(AD\) vuông góc với \(IK\).

Trong mặt phẳng \(\left( {SAD} \right)\) kẻ \(AH\) vuông góc với \(SD\).

Ta có \[IK \bot \left( {SAD} \right)\] vì \[IK \bot AD\] và \[IK \bot SA\].

Suy ra \[IK \bot AH\].

Vậy \[\left\{ \begin{array}{l}AH \bot SD\\AH \bot IK\end{array} \right. \Rightarrow AH \bot \left( {SIK} \right)\]. Vậy \(AH = d\left( {A,\left( {SIK} \right)} \right)\).

Gọi \(M\) là trung điểm của \(IK\), suy ra \[AD = CM = a\sqrt 3 \] (tam giác \(CIK\) đều cạnh \(2a\)).

Ta có \[\frac{1}{{A{H^2}}} = \frac{1}{{A{S^2}}} + \frac{1}{{A{D^2}}} = \frac{1}{{3{a^2}}} + \frac{1}{{3{a^2}}} \Rightarrow AH = \frac{{a\sqrt 6 }}{2}\].

Suy ra \[d\left( {SI,AB} \right) = \frac{{a\sqrt 6 }}{2}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho cấp số cộng \(({u_n})\)có \({u_1} = 4;\,{u_2} = 1\). Giá trị của \({u_{10}}\)bằng:

Xem đáp án » 15/04/2022 15,202

Câu 2:

Cho khối nón có bán kính \[R = 3\], đường sinh \[l = 5\]. Thể tích khối nón đã cho bằng

Xem đáp án » 14/04/2022 8,608

Câu 3:

Một đoàn tàu có 5 toa chở khách với mỗi toa còn ít nhất 5 chỗ trống. Trên sân ga có 5 hành khách chuẩn bị lên tàu. Tính xác suất để có ít nhất 1 toa có nhiều hơn 2 khách lên

Xem đáp án » 14/04/2022 5,411

Câu 4:

Cho khối chóp có thể tích \[V = 10\] và chiều cao \[h = 6\]. Diện tích đáy của khối chóp đã cho bằng

Xem đáp án » 14/04/2022 5,373

Câu 5:

Diện tích S của hình phẳng giới hạn bởi các đường \(y = 2{x^2} + 3x + 1\,,\,y = {x^3} + 1\,\) được tính bởi công thức nào dưới đây ?

Xem đáp án » 15/04/2022 4,481

Câu 6:

Số giao điểm của đồ thị hàm số \(y = {x^4} + 3{x^2} - 4\) với trục hoành là

Xem đáp án » 14/04/2022 4,222

Câu 7:

Cho hàm số \(f\left( x \right) = \frac{{mx + 1}}{{x + 1}}\) ( \(m\)là tham số thực). Gọi \(S\) là tập hợp các giá trị của \(m\)sao cho \(\mathop {max}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| + \mathop {min}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| = 3\). Số phần tử của \(S\) là

Xem đáp án » 15/04/2022 4,195

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store