Câu hỏi:

15/04/2022 715

Có bao nhiêu giá trị nguyên dương của tham số

\(m\) sao cho hàm số \(f\left( x \right) = - \frac{1}{3}{x^3} + m{x^2} - 4x + 2020\) nghịch biến trên \(\left( {0; + \infty } \right)\)?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn đáp án D

Ta có \(f'\left( x \right) = - {x^2} + 2mx - 4\)

Hàm số nghịch biến trên \(\left( {0; + \infty } \right)\)\( \Leftrightarrow f'\left( x \right) \le 0,\) \(\,\forall x \in \left( {0; + \infty } \right)\).

\(\begin{array}{l} \Leftrightarrow - {x^2} + 2mx - 4 \le 0,\,\forall x \in \left( {0; + \infty } \right)\\ \Leftrightarrow 2m \le \frac{{{x^2} + 4}}{x} = g\left( x \right),\forall x \in \left( {0; + \infty } \right)\\ \Leftrightarrow 2m \le \mathop {\min }\limits_{\left( {0; + \infty } \right)} g\left( x \right)\end{array}\)

Xét hàm số \(g\left( x \right) = \frac{{{x^2} + 4}}{x}\) trên \(\left( {0; + \infty } \right)\) ta có

\(g'\left( x \right) = \frac{{{x^2} - 4}}{{{x^2}}};\) \(g'\left( x \right) = 0 \Leftrightarrow x = \pm 2\)

Bảng biến thiên của hàm số: \(g\left( x \right) = \frac{{{x^2} + 4}}{x}\) trên \(\left( {0; + \infty } \right)\)

Có bao nhiêu giá trị nguyên dương của tham số m sao cho hàm số f(x) =   (ảnh 1)

Từ BBT suy ra \(2m \le 4 \Leftrightarrow m \le 2\)

Do \(m\) nhận giá trị nguyên dương nên \(m \in \left\{ {\,1\,;\,2} \right\}\).

Vậy có 2 giá trị nguyên của tham số \(m\) thỏa mãn yêu cầu bài toán.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho cấp số cộng \(({u_n})\)có \({u_1} = 4;\,{u_2} = 1\). Giá trị của \({u_{10}}\)bằng:

Xem đáp án » 15/04/2022 18,908

Câu 2:

Cho khối nón có bán kính \[R = 3\], đường sinh \[l = 5\]. Thể tích khối nón đã cho bằng

Xem đáp án » 14/04/2022 8,861

Câu 3:

Một đoàn tàu có 5 toa chở khách với mỗi toa còn ít nhất 5 chỗ trống. Trên sân ga có 5 hành khách chuẩn bị lên tàu. Tính xác suất để có ít nhất 1 toa có nhiều hơn 2 khách lên

Xem đáp án » 14/04/2022 7,115

Câu 4:

Cho khối chóp có thể tích \[V = 10\] và chiều cao \[h = 6\]. Diện tích đáy của khối chóp đã cho bằng

Xem đáp án » 14/04/2022 5,833

Câu 5:

Diện tích S của hình phẳng giới hạn bởi các đường \(y = 2{x^2} + 3x + 1\,,\,y = {x^3} + 1\,\) được tính bởi công thức nào dưới đây ?

Xem đáp án » 15/04/2022 5,505

Câu 6:

Số giao điểm của đồ thị hàm số \(y = {x^4} + 3{x^2} - 4\) với trục hoành là

Xem đáp án » 14/04/2022 4,901

Câu 7:

Cho hàm số \(f\left( x \right) = \frac{{mx + 1}}{{x + 1}}\) ( \(m\)là tham số thực). Gọi \(S\) là tập hợp các giá trị của \(m\)sao cho \(\mathop {max}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| + \mathop {min}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| = 3\). Số phần tử của \(S\) là

Xem đáp án » 15/04/2022 4,596
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua