Câu hỏi:

15/04/2022 303 Lưu

Theo một thống kê cho thấy, tại một tỉnh X tỉ lệ một người nam giới có người yêu \(P\) tỉ lệ thuận với chiều cao \(h\)(cm) của họ. Người ta xác định được rằng tỉ lệ thoát ế trên được tính bằng công thức \(P(h) = \frac{1}{{1 + 27{e^{ - 0,02h}}}}\). Hỏi một người nam phải cao ít nhất bao nhiêu cm để tỉ lệ họ có người yêu đạt hơn \(50\% \).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn đáp án D

Để tỉ lệ người đó có người yêu đạt trên \(50\% \)

\( \Leftrightarrow P(h) >\frac{1}{2} \Leftrightarrow \frac{1}{{1 + 27{e^{ - 0,02h}}}} >\frac{1}{2}\)

\( \Leftrightarrow 1 + 27{e^{ - 0,02h}} < 2 \Leftrightarrow {e^{ - 0,02h}} < \frac{1}{{27}}\)

\( \Leftrightarrow - 0.02h < \ln \frac{1}{{27}} \Leftrightarrow h >\frac{{\ln \frac{1}{{27}}}}{{ - 0.02}} \approx 164.79\).</>

Vậy người đó cần cao ít nhất \(165\)(cm) .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn đáp án B

Ta có: \({u_2} = {u_1} + d \Rightarrow d = - 3\)

Khi đó \[{u_{10}} = {u_1} + 9d \Leftrightarrow {u_{10}} = 4 + 9.( - 3) \Leftrightarrow {u_{10}} = - 23\]

Lời giải

Chọn đáp án B

Ta có : \[{l^2} = {h^2} + {R^2} \Rightarrow {h^2} = {l^2} - {R^2} = {5^2} - {3^2} = 16\]\[ \Rightarrow h = 4\].

Áp dụng \[V = \frac{1}{3}.\pi .{R^2}.h = \frac{1}{3}.\pi {.3^2}.4 = 12\pi \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP