Câu hỏi:
15/04/2022 464Khi cắt khối trụ \(\left( T \right)\) bởi một mặt phẳng song song với trục và cách trục của trụ \(\left( T \right)\) một khoảng bằng \(a\sqrt 2 \) ta được thiết diện là hình vuông có diện tích bằng \(8{a^2}\). Tính diện tích toàn phần của hình trụ.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Chọn đáp án D
Thiết diện là hình vuông \(ABCD\). Gọi \(H\) là trung điểm đoạn \(CD\).
Ta có: \(\left\{ \begin{array}{l}OH \bot CD\\OH \bot AD\end{array} \right. \Rightarrow OH \bot \left( {ABCD} \right)\).
Do đó: \(d\left( {O'O,\left( {ABCD} \right)} \right) = d\left( {O,\left( {ABCD} \right)} \right) = OH = a\sqrt 2 \).
Ta có: \({S_{ABCD}} = D{C^2} = 8{a^2} \Rightarrow h = AD = DC = \sqrt {8{a^2}} = 2\sqrt 2 a \Rightarrow DH = a\sqrt 2 \).
Ta có: \(R = OD = \sqrt {O{H^2} + D{H^2}} = 2a\).
Vậy \({S_{tp}} = 2\pi Rh + 2\pi {R^2} = 2\pi .2a.2\sqrt 2 a + 2\pi .4{a^2} = \left( {8 + 8\sqrt 2 } \right)\pi {a^2}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho cấp số cộng \(({u_n})\)có \({u_1} = 4;\,{u_2} = 1\). Giá trị của \({u_{10}}\)bằng:
Câu 2:
Cho khối nón có bán kính \[R = 3\], đường sinh \[l = 5\]. Thể tích khối nón đã cho bằng
Câu 3:
Câu 4:
Cho khối chóp có thể tích \[V = 10\] và chiều cao \[h = 6\]. Diện tích đáy của khối chóp đã cho bằng
Câu 5:
Diện tích S của hình phẳng giới hạn bởi các đường \(y = 2{x^2} + 3x + 1\,,\,y = {x^3} + 1\,\) được tính bởi công thức nào dưới đây ?
Câu 6:
Số giao điểm của đồ thị hàm số \(y = {x^4} + 3{x^2} - 4\) với trục hoành là
Câu 7:
Cho hàm số \(f\left( x \right) = \frac{{mx + 1}}{{x + 1}}\) ( \(m\)là tham số thực). Gọi \(S\) là tập hợp các giá trị của \(m\)sao cho \(\mathop {max}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| + \mathop {min}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| = 3\). Số phần tử của \(S\) là
về câu hỏi!