Câu hỏi:

15/04/2022 261 Lưu

Cho hàm số \[f\left( x \right)\] thỏa mãn \[f\left( 0 \right) = 0\] và \[f'\left( x \right) = \left( {{e^x} + {e^{ - x}}} \right)\cos x;\forall x \in \mathbb{R}\]. Khi đó \[\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {f\left( x \right)dx} \] bằng

A. \[\frac{{{e^{\frac{\pi }{2}}} - {e^{ - \frac{\pi }{2}}}}}{2}\].

B. \[\frac{{{e^{\frac{\pi }{2}}} + {e^{ - \frac{\pi }{2}}}}}{2}\].

C. \[0\].

D.\[1\] .

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn đáp án C

Ta có hàm số \[f'\left( t \right) = \left( {{e^t} + {e^{ - t}}} \right)\cos t\] là hàm số chẵn trên \[\mathbb{R}\], nên \[f\left( x \right) - f\left( { - x} \right) = \int\limits_{ - x}^x {f'\left( t \right)dt} = 2\int\limits_0^x {f'\left( t \right)dt} = 2\left[ {f\left( x \right) - f\left( 0 \right)} \right] = 2f\left( x \right) \Rightarrow f\left( { - x} \right) = - f\left( x \right);\forall x \in \mathbb{R}\] suy ra hàm số \[f\left( x \right)\] là lẻ trên \[\mathbb{R}\].

Vậy \[\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {f\left( x \right)dx} = 0\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \({u_{10}} = - 31\).

B. \({u_{10}} = - 23\).

C. \({u_{10}} = - 20\).

D. \({u_{10}} = 15\).

Lời giải

Chọn đáp án B

Ta có: \({u_2} = {u_1} + d \Rightarrow d = - 3\)

Khi đó \[{u_{10}} = {u_1} + 9d \Leftrightarrow {u_{10}} = 4 + 9.( - 3) \Leftrightarrow {u_{10}} = - 23\]

Lời giải

Chọn đáp án B

Ta có : \[{l^2} = {h^2} + {R^2} \Rightarrow {h^2} = {l^2} - {R^2} = {5^2} - {3^2} = 16\]\[ \Rightarrow h = 4\].

Áp dụng \[V = \frac{1}{3}.\pi .{R^2}.h = \frac{1}{3}.\pi {.3^2}.4 = 12\pi \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[S = \pi \int\limits_{ - 1}^3 {{{\left( {{x^3} - 2{x^2} - 3x} \right)}^2}dx} \].

B. \(S = \int\limits_{ - 1}^3 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} \).

C.\(S = \int\limits_{ - 1}^0 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} + \int\limits_0^3 {\left( {2{x^2} + 3x - {x^3}} \right)dx} \).

D. \(S = \int\limits_{ - 1}^0 {\left( {2{x^2} + 3x - {x^3}} \right)dx} + \int\limits_0^3 {\left( {{x^3} - 2{x^2} - 3x} \right)dx} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP