Câu hỏi:

15/04/2022 4,212

Cho hàm số \(f\left( x \right) = \frac{{mx + 1}}{{x + 1}}\) ( \(m\)là tham số thực). Gọi \(S\) là tập hợp các giá trị của \(m\)sao cho \(\mathop {max}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| + \mathop {min}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| = 3\). Số phần tử của \(S\) là

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn đáp án B

* Nếu \(m = 1\) thì \(f\left( x \right) = 1;\forall x \in \left[ {1;2} \right]\) đây là hàm hằng nên \(\mathop {max}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| = \mathop {min}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| = 1\) \( \Rightarrow \mathop {max}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| + \mathop {min}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| = 2 \ne 3\) ( loại).

* Nếu \(m = 0\) thì \(f\left( x \right) = \frac{1}{{x + 1}};\forall x \in \left[ {1;2} \right]\), có \(f'\left( x \right) = \frac{{ - 1}}{{{{\left( {x + 1} \right)}^2}}} < 0;\forall x \in \left[ {1;2} \right]\)nên \(\mathop {max}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| = f\left( 1 \right) = \frac{1}{2};\)\(\mathop {min}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| = f\left( 2 \right) = \frac{1}{3}\)\( \Rightarrow \mathop {max}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| + \mathop {min}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| \ne 3\) ( loại).

*Nếu \(m \ne 1;m \ne 0\) ta thấy hàm số \(f\left( x \right) = \frac{{mx + 1}}{{x + 1}}\) liên tục trên đoạn \(\left[ {1;2} \right]\) , \(f\left( 1 \right) = \frac{{m + 1}}{2};f\left( 2 \right) = \frac{{2m + 1}}{3}\) và đồ thị hàm số cắt trục hoành tại điểm \(x = - \frac{1}{m}\)

TH1: Nếu \[1 \le - \frac{1}{m} \le 2 \Leftrightarrow - 1 \le m \le - \frac{1}{2}\] thì \[\mathop {max}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| = max\left\{ {\left| {\frac{{m + 1}}{2}} \right|;\left| {\frac{{2m + 1}}{3}} \right|} \right\};\mathop {min}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| = 0\].

Do đó \(\mathop {max}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| + \mathop {min}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| = 3 \Leftrightarrow \left[ \begin{array}{l}\left| {\frac{{m + 1}}{2}} \right| = 3\\\left| {\frac{{2m + 1}}{3}} \right| = 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m + 1 = \pm 6\\2m + 1 = \pm 9\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}m = 5\\m = - 7\\m = 4\\m = - 5\end{array} \right.\)(loại).

TH2: Nếu \[ - \frac{1}{m} < 1 \Leftrightarrow \left[ \begin{array}{l}m < - 1\\m >0\end{array} \right.\] thì </>

+) \[m >0\]: \(\mathop {max}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| = max\left\{ {\frac{{m + 1}}{2};\frac{{2m + 1}}{3}} \right\};\mathop {min}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| = min\left\{ {\frac{{m + 1}}{2};\frac{{2m + 1}}{3}} \right\}\)

Do đó \(\mathop {max}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| + \mathop {min}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| = 3 \Leftrightarrow \frac{{2m + 1}}{3} + \frac{{m + 1}}{2} = 3 \Leftrightarrow m = \frac{{13}}{7}\) ( thỏa mãn).

+) \[m < - 1\]: </>

</>\(\mathop {max}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| = max\left\{ { - \frac{{m + 1}}{2}; - \frac{{2m + 1}}{3}} \right\};\mathop {min}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| = min\left\{ { - \frac{{m + 1}}{2}; - \frac{{2m + 1}}{3}} \right\}\)

Do đó \(\mathop {max}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| + \mathop {min}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| = 3 \Leftrightarrow - \frac{{2m + 1}}{3} - \frac{{m + 1}}{2} = 3 \Leftrightarrow m = - \frac{{23}}{7}\) (thỏa mãn).

TH3: Nếu \( - \frac{1}{m} >2 \Leftrightarrow - \frac{1}{2} < m < 0\) thì \(\mathop {max}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| = max\left\{ {\frac{{m + 1}}{2};\frac{{2m + 1}}{3}} \right\};\mathop {min}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| = min\left\{ {\frac{{m + 1}}{2};\frac{{2m + 1}}{3}} \right\}\)

Do đó \(\mathop {max}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| + \mathop {min}\limits_{\left[ {1;2} \right]} \left| {f\left( x \right)} \right| = 3 \Leftrightarrow \frac{{2m + 1}}{3} + \frac{{m + 1}}{2} = 3 \Leftrightarrow m = \frac{{13}}{7}\) ( không thỏa mãn).

Vậy có 2 giá trị của \(m\)thỏa mãn bài toán.

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho cấp số cộng \(({u_n})\)có \({u_1} = 4;\,{u_2} = 1\). Giá trị của \({u_{10}}\)bằng:

Xem đáp án » 15/04/2022 15,331

Câu 2:

Cho khối nón có bán kính \[R = 3\], đường sinh \[l = 5\]. Thể tích khối nón đã cho bằng

Xem đáp án » 14/04/2022 8,611

Câu 3:

Một đoàn tàu có 5 toa chở khách với mỗi toa còn ít nhất 5 chỗ trống. Trên sân ga có 5 hành khách chuẩn bị lên tàu. Tính xác suất để có ít nhất 1 toa có nhiều hơn 2 khách lên

Xem đáp án » 14/04/2022 5,435

Câu 4:

Cho khối chóp có thể tích \[V = 10\] và chiều cao \[h = 6\]. Diện tích đáy của khối chóp đã cho bằng

Xem đáp án » 14/04/2022 5,376

Câu 5:

Diện tích S của hình phẳng giới hạn bởi các đường \(y = 2{x^2} + 3x + 1\,,\,y = {x^3} + 1\,\) được tính bởi công thức nào dưới đây ?

Xem đáp án » 15/04/2022 4,490

Câu 6:

Số giao điểm của đồ thị hàm số \(y = {x^4} + 3{x^2} - 4\) với trục hoành là

Xem đáp án » 14/04/2022 4,236

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store