Cho hàm số \[y = \ln \left( {{x^2} + 4} \right) + \left( {10 - {m^2}} \right)x\], với m là tham số thực. Có bao nhiêu giá trị nguyên của m để hàm số đồng biến trên khoảng \[\left( { - \infty ; + \infty } \right)\]?
Quảng cáo
Trả lời:

Chọn đáp án C
Ta có \(y' = \frac{{2x}}{{{x^2} + 4}} + 10 - {m^2} \ge 0,{\rm{ }}\forall x \in \mathbb{R} \Leftrightarrow {m^2} \le 10 + \frac{{2x}}{{{x^2} + 4}} = f\left( x \right),{\rm{ }}\forall x \in \mathbb{R}\).
Lưu ý
\({x^2} + 4 \ge - 4x \Rightarrow \frac{{2x}}{{{x^2} + 4}} \ge - \frac{1}{2} \Rightarrow {m^2} \le 10 - \frac{1}{2} = \frac{{19}}{2} \Rightarrow - \sqrt {\frac{{19}}{2}} \le m \le \sqrt {\frac{{19}}{2}} \).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn đáp án B
Hàm số đã cho đã xác định và liên tục trên \(\left[ {1;4} \right]\).
Ta có \(\left\{ \begin{array}{l}x \in \left( {1;4} \right)\\y' = 2x - \frac{{16}}{{{x^2}}} = 0\end{array} \right. \Leftrightarrow x = 2\).
Tính \(y\left( 1 \right) = 17;{\rm{ }}y\left( 4 \right) = 20;{\rm{ }}y\left( 2 \right) = 12 \Rightarrow \mathop {\min }\limits_{\left[ {1;4} \right]} y = 12\)
Lời giải
Chọn đáp án A
Đường thẳng \(y = \frac{{11}}{2}\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại đúng 1 điểm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.