Câu hỏi:
15/04/2022 448Trong không gian Oxyz,cho hai đường thẳng
\[{d_1}:\left\{ {\begin{array}{*{20}{l}}{x = 3 + t}\\{y = 1 - 2t}\\{z = 4}\end{array}} \right.\left( {t \in \mathbb{R}} \right),{d_2}:\left\{ {\begin{array}{*{20}{l}}{x = 2 + t'}\\{y = 4}\\{z = 1 - 3t'}\end{array}} \right.\left( {t' \in \mathbb{R}} \right).\]Mặt phẳng \[\left( P \right):ax + by + cz - 2 = 0\] đi qua điểm \[A\left( {1; - 2;1} \right),\] đồng thời song song với đường thẳng \[{d_1}\] và \[{d_2}.\] Tính \[a + b + c.\]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Chọn đáp án C
Đường thẳng \({d_1}\) đi qua \(M\left( {3;1;4} \right)\) và có một VTCP là \(\overrightarrow {{u_1}} = \left( {1; - 2;0} \right)\).
Đường thẳng \({d_2}\) đi qua \(N\left( {2;4;1} \right)\) và có một VTCP là \(\overrightarrow {{u_2}} = \left( {1;0; - 3} \right)\).
Ta có \(\left\{ \begin{array}{l}\left( P \right)//{d_1}\\\left( P \right)//{d_2}\end{array} \right. \Rightarrow \left( P \right)\) sẽ nhận \(\left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right] = \left( {6;3;2} \right)\) là một VTPT.
Kết hợp với \(\left( R \right)\) qua \(A\left( {1; - 2;1} \right) \Rightarrow \left( R \right):6\left( {x - 1} \right) + 3\left( {y + 2} \right) + 2\left( {z - 1} \right) = 0\)
\( \Rightarrow \left( R \right):6x + 3y + 2z - 2 = 0\).
Rõ ràng \(M\left( {3;1;4} \right)\) và \(N\left( {2;4;1} \right)\) không thuộc \(\left( R \right):6x + 3y + 2z - 2 = 0\)
\( \Rightarrow \left( R \right):6x + 3y + 2z - 2 = 0\) thỏa mãn.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm giá trị nhỏ nhất của hàm số \[y = {x^2} + \frac{{16}}{x}\] trên đoạn \[\left[ {1;4} \right].\]
Câu 4:
Cho hàm số f(x) có bảng biến thiên như sau:
Phương trình \[2f\left( x \right) - 11 = 0\] có số nghiệm thực là
Câu 5:
Cho (H) là hình phẳng giới hạn bởi parabol \[y = 2{x^2} - 1\] và nửa đường tròn có phương trình \[y = \sqrt {2 - {x^2}} \] (với \[ - \sqrt 2 \le x \le \sqrt 2 \]) (phần gạch chéo trong hình vẽ). Diện tích của (H) bằng
Câu 6:
Cho \[{9^x} + {9^{ - x}} = 14.\] Tính giá trị của biểu thức \[P = \frac{{6 - 3\left( {{3^x} + {3^{ - x}}} \right)}}{{12 + {3^{x + 1}} + {3^{1 - x}}}}.\]
Câu 7:
Cho khối nón (N) có đường sinh bằng 5 và diện tích xung quanh bằng \[15\pi .\] Tính thể tích V của khối nón (N).
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
50 bài tập Hình học không gian có lời giải
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận