Câu hỏi:

15/04/2022 524

Trong không gian Oxyz,cho hai đường thẳng

\[{d_1}:\left\{ {\begin{array}{*{20}{l}}{x = 3 + t}\\{y = 1 - 2t}\\{z = 4}\end{array}} \right.\left( {t \in \mathbb{R}} \right),{d_2}:\left\{ {\begin{array}{*{20}{l}}{x = 2 + t'}\\{y = 4}\\{z = 1 - 3t'}\end{array}} \right.\left( {t' \in \mathbb{R}} \right).\]Mặt phẳng \[\left( P \right):ax + by + cz - 2 = 0\] đi qua điểm \[A\left( {1; - 2;1} \right),\] đồng thời song song với đường thẳng \[{d_1}\] và \[{d_2}.\] Tính \[a + b + c.\]

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn đáp án C

Đường thẳng \({d_1}\) đi qua \(M\left( {3;1;4} \right)\) và có một VTCP là \(\overrightarrow {{u_1}} = \left( {1; - 2;0} \right)\).

Đường thẳng \({d_2}\) đi qua \(N\left( {2;4;1} \right)\) và có một VTCP là \(\overrightarrow {{u_2}} = \left( {1;0; - 3} \right)\).

Ta có \(\left\{ \begin{array}{l}\left( P \right)//{d_1}\\\left( P \right)//{d_2}\end{array} \right. \Rightarrow \left( P \right)\) sẽ nhận \(\left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right] = \left( {6;3;2} \right)\) là một VTPT.

Kết hợp với \(\left( R \right)\) qua \(A\left( {1; - 2;1} \right) \Rightarrow \left( R \right):6\left( {x - 1} \right) + 3\left( {y + 2} \right) + 2\left( {z - 1} \right) = 0\)

\( \Rightarrow \left( R \right):6x + 3y + 2z - 2 = 0\).

Rõ ràng \(M\left( {3;1;4} \right)\) và \(N\left( {2;4;1} \right)\) không thuộc \(\left( R \right):6x + 3y + 2z - 2 = 0\)

\( \Rightarrow \left( R \right):6x + 3y + 2z - 2 = 0\) thỏa mãn.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm giá trị nhỏ nhất của hàm số \[y = {x^2} + \frac{{16}}{x}\] trên đoạn \[\left[ {1;4} \right].\]

Xem đáp án » 15/04/2022 3,982

Câu 2:

Giới hạn \[\lim \frac{1}{{2019n + 2020}}\] bằng

Xem đáp án » 19/04/2022 2,510

Câu 3:

Tính đạo hàm của hàm số \[y = {\log _2}\sqrt {2x + 3} .\]

Xem đáp án » 15/04/2022 2,453

Câu 4:

Cho hàm số f(x) có bảng biến thiên như sau:

 Cho hàm số f(x) có bảng biến thiên như sau:Phương trình 2f(x)-11=0 (ảnh 1)

Phương trình \[2f\left( x \right) - 11 = 0\] có số nghiệm thực là

Xem đáp án » 15/04/2022 2,254

Câu 5:

Trong không gian Oxyz,cho điểm \[A\left( {2; - 1; - 2} \right)\] và đường thẳng d có phương trình \[\frac{{x - 1}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 1}}{1}\]. Mặt phẳng (P) đi qua A, song song với d và khoảng cách từ d tới (P) là lớn nhất. Mặt phẳng (P) vuông góc với mặt phẳng nào dưới đây?

Xem đáp án » 19/04/2022 2,050

Câu 6:

Cho (H) là hình phẳng giới hạn bởi parabol \[y = 2{x^2} - 1\] và nửa đường tròn có phương trình \[y = \sqrt {2 - {x^2}} \] (với \[ - \sqrt 2 \le x \le \sqrt 2 \]) (phần gạch chéo trong hình vẽ). Diện tích của (H) bằng

 Cho (H) là hình phẳng giới hạn bởi parabol y=2x^2 -1  và nửa đường tròn có  (ảnh 1)

Xem đáp án » 15/04/2022 1,990

Câu 7:

Cho \[{9^x} + {9^{ - x}} = 14.\] Tính giá trị của biểu thức \[P = \frac{{6 - 3\left( {{3^x} + {3^{ - x}}} \right)}}{{12 + {3^{x + 1}} + {3^{1 - x}}}}.\]

Xem đáp án » 15/04/2022 1,943
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua