Câu hỏi:

15/04/2022 337 Lưu

Cho hàm số \[y = f\left( x \right)\] có đạo hàm liên tục trên \[\mathbb{R}\] và đồ thị hàm số \[y = f'\left( x \right)\] như hình vẽ. Bất phương trình \[f\left( x \right) \le {3^x} - 2x + m\] có nghiệm với mọi \[x \in \left( { - \infty ;1} \right]\] khi và chỉ khi

 Cho hàm số y=f(x) có đạo hàm liên tục trên R và đồ thị hàm số y=f'(x) như hình vẽ.  (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn đáp án A

Xét hàm số \(g\left( x \right) = f\left( x \right) - {3^x} + 2x,{\rm{ }}x \in \left( { - \infty ;1} \right] \Rightarrow g'\left( x \right) = f'\left( x \right) - {3^x}\ln 3 + 2\).

Dựa vào hình vẽ thì

\(f'\left( x \right) < - 3,{\rm{ }}\forall x \in \left( { - \infty ;1} \right) \Rightarrow g'\left( x \right) < - 3 - {3^x}\ln 3 + 2 < 0,{\rm{ }}\forall x \in \left( { - \infty ;1} \right)\)

\( \Rightarrow g\left( x \right)\) nghịch biến trên \(\left( { - \infty ;1} \right] \Rightarrow g\left( x \right) \ge g\left( 1 \right) = f\left( 1 \right) - 1\).

Khi đó \(m \ge g\left( x \right)\) có nghiệm với mọi \(x \in \left( { - \infty ;1} \right]\)

\( \Leftrightarrow m \ge {\min _{\left( { - \infty ;1} \right]}}g\left( x \right) \Leftrightarrow m \ge g\left( 1 \right) \Leftrightarrow m \ge f\left( 1 \right) - 1\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn đáp án B

Hàm số đã cho đã xác định và liên tục trên \(\left[ {1;4} \right]\).

Ta có \(\left\{ \begin{array}{l}x \in \left( {1;4} \right)\\y' = 2x - \frac{{16}}{{{x^2}}} = 0\end{array} \right. \Leftrightarrow x = 2\).

Tính \(y\left( 1 \right) = 17;{\rm{ }}y\left( 4 \right) = 20;{\rm{ }}y\left( 2 \right) = 12 \Rightarrow \mathop {\min }\limits_{\left[ {1;4} \right]} y = 12\)

Lời giải

Chọn đáp án A

Đường thẳng \(y = \frac{{11}}{2}\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại đúng 1 điểm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP