Biết rằng phương trình \[{m^2}{x^2}\left( {mx + 3} \right) = \left( {{x^2} + 2} \right)\sqrt {{x^2} + 1} - 4mx - 2\] (m là tham số thực) có nghiệm thuộc đoạn \[\left[ {1;2} \right]\] khi và chỉ khi \[m \in \left[ {a;b} \right]\] với \[a,{\rm{ }}b \in \mathbb{R}.\] Mệnh đề nào dưới đây là đúng?
Quảng cáo
Trả lời:
Chọn đáp án C
Ta có \({\left( {mx + 1} \right)^2} + mx + 1 = {\left( {\sqrt {{x^2} + 1} } \right)^3} + \sqrt {{x^2} + 1} \Leftrightarrow f\left( {mx + 1} \right) = f\left( {\sqrt {{x^2} + 1} } \right)\)
\( \Leftrightarrow mx + 1 = \sqrt {{x^2} + 1} \Leftrightarrow mx = \sqrt {{x^2} + 1} - 1 \Leftrightarrow mx = \frac{{{x^2}}}{{\sqrt {{x^2} + 1} + 1}} \Rightarrow m = \frac{x}{{\sqrt {{x^2} + 1} + 1}}\)
\( \Rightarrow g'\left( x \right) = \frac{{\sqrt {{x^2} + 1} + 1 - x.\frac{x}{{\sqrt {{x^2} + 1} }}}}{{{{\left( {\sqrt {{x^2} + 1} + 1} \right)}^2}}} = \frac{{\sqrt {{x^2} + 1} + 1}}{{{{\left( {\sqrt {{x^2} + 1} + 1} \right)}^2}\sqrt {{x^2} + 1} }} >0,{\rm{ }}\forall x \in \left( {1;2} \right)\)
Từ đó \(g\left( 1 \right) \le m \le g\left( 2 \right) \Leftrightarrow \sqrt 2 - 1 \le m \le \frac{{\sqrt 5 - 1}}{2} \Rightarrow a = \sqrt 2 - 1;{\rm{ }}b = \frac{{\sqrt 5 - 1}}{2}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn đáp án B
Hàm số đã cho đã xác định và liên tục trên \(\left[ {1;4} \right]\).
Ta có \(\left\{ \begin{array}{l}x \in \left( {1;4} \right)\\y' = 2x - \frac{{16}}{{{x^2}}} = 0\end{array} \right. \Leftrightarrow x = 2\).
Tính \(y\left( 1 \right) = 17;{\rm{ }}y\left( 4 \right) = 20;{\rm{ }}y\left( 2 \right) = 12 \Rightarrow \mathop {\min }\limits_{\left[ {1;4} \right]} y = 12\)
Lời giải
Chọn đáp án D
Kẻ \(AK \bot d{\rm{ }}\left( {K \in d} \right) \Rightarrow K\left( {t + 1;1 - t;t + 1} \right) \Rightarrow \overrightarrow {AK} = \left( {t - 1;2 - t;t + 3} \right)\).
Ép cho \(AK \bot d \Leftrightarrow \overrightarrow {AK} .\overrightarrow {{u_d}} = 0 \Leftrightarrow \left( {t - 1} \right) + \left( {t - 2} \right) + \left( {t + 3} \right) = 0 \Leftrightarrow t = 0\)
\( \Rightarrow K\left( {1;1;1} \right) \Rightarrow \overrightarrow {KA} = \left( {1; - 2; - 3} \right) \Rightarrow KA = \sqrt {14} \).
Kẻ \(KH \bot \left( P \right) \Rightarrow d\left( {d;\left( P \right)} \right) = d\left( {K;\left( P \right)} \right) = KH \le KA = \sqrt {14} \)
Dấu “=” xảy ra khi \(\left( P \right)\) qua Avà vuông góc với KA.
Khi đó \(\left( P \right)\) nhận \(\overrightarrow {KA} = \left( {1; - 2; - 3} \right)\) là một VTPT.
Vậy \(\left( P \right)\) vuông góc với mặt phẳng có phương trình \(3x + z + 2 = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.