Câu hỏi:

16/04/2022 360

Cho hàm số fx=2x2x.  Số giá trị nguyên của m để bất phương trình fx32x2+3xm+f2x2x25<0 có nghiệm đúng với mọi x0;1.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

 fx=2x2x=2x2x=fx

 f'x=2xln2+2xln2>0,xfx là hàm đồng biến trên 

Do đó fx32x2+3xm+f2x2x25<0,x0;1

fx32x2+3xm<f2x2x25=f2x22x+5,x0;1x32x2+3xm<2x22x+5,x0;12x22x+5<x32x2+3xm<2x22x+5,x0;1m>x34x2+5x5,x0;1m<x3+x+5,x0;1

  Xét gx=x34x2+5x5,x0;1

g'x=3x28x+5;g'x=0x=1x=53

Cho hàm số f(x) = 2^x - 2^-x. Số giá trị nguyên của m để bất phương trình f( trị tuyệt đối của ( x^3 - 2x^2 + 3x -m)) + f(2x - 2x^2 -5) nhỏ hơn 0) có nghiệm đúng với mọi x thuộc (0;1) (ảnh 1)

• Xét hx=x3+x+5,x0;1

h'x=3x2+1>0,x0;1

Cho hàm số f(x) = 2^x - 2^-x. Số giá trị nguyên của m để bất phương trình f( trị tuyệt đối của ( x^3 - 2x^2 + 3x -m)) + f(2x - 2x^2 -5) nhỏ hơn 0) có nghiệm đúng với mọi x thuộc (0;1) (ảnh 2)

Vậy 3m5.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án A

Gọi E1;1;2;F1;1;0  lần lượt là tâm 2 đáy của hình lập phương. Khi đó tâm mặt cầu ngoại tiếp hình lập phương là I1;1;1  chính là trung điểm của EF. Vậy bán kính mặt cầu là R=IA=3.

Lời giải

Đáp án D

Dựa vào đồ thị của hàm số y=f'x ta có BBT của hàm sốy=fx như sau.

Cho hàm số y = ax^4 + bx^2 + c ( a khác 0, a,b,c thuộc R)  có đồ thị (C). Biết rằng (C) không cắt trục Ox và đồ thị hàm số y = f'(x) cho bởi hình vẽ bên. Hàm số đã cho có thể là hàm số nào trong các hàm số đã cho dưới đây (ảnh 2)

Vậy hàm số chỉ có 1 CT nên a>0;b0,  ta loại được hai đáp án A B. Mặt khác (C) không cắt trục Ox nên đồ thị (C) nằm hoàn toàn phía trên trục Ox do đó c>0. Nên ta loại đáp án C. 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Trong không gian Oxyz, cho tam giác ABC với A1;2;0,B3;2;1,C1;4;4.  Tập hợp tất cả các điểm M sao cho MA2+MB2+MC2=52

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay