Câu hỏi:

17/04/2022 1,255 Lưu

Cho hàm số y=f(x)  có bảng biến thiên

Cho hàm số y = f(x) có bảng biến thiên. Số đường tiệm cận đứng và ngang của đồ thị hàm số đã cho là (ảnh 1)

Số đường tiệm cận đứng và ngang của đồ thị hàm số đã cho là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Tập xác định của hàm số y=f(x)  D=;22;+ .

* limxf(x)=2y=2 là tiệm cận ngang của đồ thị hàm số y=f(x)  khi x .

*  limx2+f(x)=x=2 là tiệm cận đứng của đồ thị hàm số y=f(x) khi x2+ .

Vậy đồ thị hàm số y=f(x)  có 1 tiệm cận đứng và 1 tiệm cận ngang.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Xét hình nằm ở góc phần tư thứ nhất.

Bên trong hình vuông cạnh a, dựng hình sao bốn cạnh đều như hình vẽ bên (các kích thước cần thiết cho như ở trong hình). Tính thể tích V của khối tròn xoay sinh ra khi quay hình sao đó quanh trục Ox.  (ảnh 2)

Khi đó ta viết phương trình đường thẳng đi qua hai điểm a2;a2  0;a4  y=x2+a4 .

Và viết phương trình đường thẳng đi qua hai điểm 

 a2;a2 a4;0  y=2xa2 .

Gọi V là thể tích khối tròn xoay cần tính.

Gọi V1  là thể tích khối tròn xoay khi quay hình phẳng được tô màu trong hình bên (chỉ xét ở góc phần tư thứ nhất) quanh trục hoành. Khi đó V=2V1 .

Ta có V1=π0a2x2+a42dxπa4a22xa22dx=5πa396

Suy ra thể tích cần tính V=2V1=5πa348 .

Bên trong hình vuông cạnh a, dựng hình sao bốn cạnh đều như hình vẽ bên (các kích thước cần thiết cho như ở trong hình). Tính thể tích V của khối tròn xoay sinh ra khi quay hình sao đó quanh trục Ox.  (ảnh 3)

Lời giải

Đáp án C

Mặt cầu (S) có tâm I(1; 2; 3) nên hình chiếu của I lên mặt phẳng (Oxy) là H(1; 2; 0)

Suy ra IH = 3.

Bán kính của đường tròn (C) là r=R2IH2=259=4

Diện tích của hình tròn là S=16π.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP