Câu hỏi:

18/04/2022 6,013

Một con lắc lò xo dao động với phương trình x = 6cos(20πt)cm. Xác định chu kỳ, tần số dao động của chất điểm.   

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Trả lời:

Ta có:

\[\omega = \frac{{2\pi }}{T} = 2\pi f \to \left\{ {\begin{array}{*{20}{c}}{T = \frac{{2\pi }}{\omega }}\\{f = \frac{\omega }{{2\pi }}}\end{array}} \right.\]

Từ phương trình, ta có: ω=20π, thay vào công thức

\[\left\{ {\begin{array}{*{20}{c}}{T = \frac{{2\pi }}{\omega } = \frac{{2\pi }}{{20\pi }} = 0,1s}\\{f = \frac{\omega }{{2\pi }} = \frac{1}{T} = 10Hz}\end{array}} \right.\]

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Trả lời:

DĐĐH được xem là hình chiếu của một chất điểm chuyển động tròn đều lên một trục nằm trong mặt phẳng quỹ đạo. Với: \[A = R;\omega = \frac{v}{R}\]

Đáp án cần chọn là: B

Câu 2

Lời giải

Trả lời:

Từ đồ thị, ta có:

A = 2cm

T = 0,4s

Đáp án cần chọn là: C

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP