ĐGTD ĐH Bách khoa - Vấn đề thuộc lĩnh vực vật lí - Viết phương trình dao động điều hòa
56 người thi tuần này 4.6 1.1 K lượt thi 13 câu hỏi 30 phút
🔥 Đề thi HOT:
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 1)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 2)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 24)
ĐGTD ĐH Bách khoa - Đọc hiểu chủ đề môi trường - Đề 1
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 6)
ĐGTD ĐH Bách khoa - Tư duy Toán học - Xác suất của biến cố và các quy tắc tính xác suất
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 4)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 18)
Nội dung liên quan:
Danh sách câu hỏi:
Lời giải
Trả lời:
Ta có:
A = 5 cm, T = 2s \[\omega = \frac{{2\pi }}{T} = \pi \,rad/s\]
Tại t = 0 \[\left\{ {\begin{array}{*{20}{c}}{x = 0}\\{v >0}\end{array}} \right. \leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\cos \varphi = 0}\\{\sin \varphi < o}\end{array}} \right. \to \varphi = - \frac{\pi }{2}\]
\[x = A\cos \left( {\omega t + \varphi } \right) = 5\cos \left( {\pi t - \frac{\pi }{2}} \right)cm\]
Đáp án cần chọn là: C
>Lời giải
Trả lời:
Ta có:
A = 8cm
v = ωR = ωA = 16π
\[ \to \omega = \frac{{16\pi }}{8} = 2\pi \,\]
Mặt khác, tại thời điểm ban đầu, chất điểm đi qua tâm O =>x = 0, nằm trong mặt phẳng có quỹ đạo có chiều từ trái qua phải =>v >0
\[ \to \varphi = - \frac{\pi }{2}\]
\[ \to x = 8\cos \left( {2\pi t - \frac{\pi }{2}} \right)cm\]
Đáp án cần chọn là: D
Lời giải
Trả lời:
Ta có:
Tốc độ góc: ω = 2πf = 2π.1 = 2π(rad/s)
Biên độ dao động:
\[{A^2} = {x^2} + \frac{{{v^2}}}{{{\omega ^2}}} = {5^2} + {\left( {\frac{{10\pi }}{{2\pi }}} \right)^2}\]
\[ \Rightarrow A = 5\sqrt 2 cm\]
Tại t = 0:
\[\left\{ {\begin{array}{*{20}{c}}{x = A\cos \varphi = 5}\\{V = - A\omega \sin \varphi >0}\end{array}} \right. \to \left\{ {\begin{array}{*{20}{c}}{\cos \varphi = \frac{5}{{5\sqrt 2 }}}\\{\sin \varphi < 0}\end{array}} \right.\]
\[ \Rightarrow \varphi = - \frac{\pi }{4}\]
\[ \Rightarrow x = 5\sqrt 2 \cos \left( {2\pi t - \frac{\pi }{4}} \right)cm\]
\[ \Rightarrow x = 5\sqrt 2 \sin \left( {2\pi t - \frac{\pi }{4} + \frac{\pi }{2}} \right)\]
\[ \Rightarrow x = 5\sqrt 2 \sin \left( {2\pi t + \frac{\pi }{4}} \right)cm\]
Đáp án cần chọn là: A
>Lời giải
Trả lời:
Ta có: Thời gian vật đi từ VTCB đến A là :
\[\frac{T}{4} = 0,5 \to T = 2s\]
\[ \to \omega = \frac{{2\pi }}{T} = \pi \,rad/s\]
Biên độ A = 4cm
Tại t = 0: \[\left\{ {\begin{array}{*{20}{c}}{x = A\cos \varphi = 0}\\{v = - A\omega \sin \varphi >0}\end{array}} \right. \to \left\{ {\begin{array}{*{20}{c}}{\cos \varphi = 0}\\{\sin \varphi < 0}\end{array}} \right.\]
\[ \Rightarrow \varphi = - \frac{\pi }{2}\]
\[ \Rightarrow x = 4\cos \left( {\pi t - \frac{\pi }{2}} \right)cm\]
Đáp án cần chọn là: D
>Lời giải
Trả lời:
Từ đồ thị, ta có: A = 4cm
Thời gian vật đi từ t=0 (\[x = \frac{A}{2}\]) đến t = 2,5s (x = 0) là:
\[\Delta t = 2,5s = \frac{T}{6} + \frac{T}{4} = \frac{{5T}}{{12}}\]
\[ \to T = 6s \to \omega = \frac{{2\pi }}{T} = \frac{\pi }{3}rad/s\]
Tại t = 0: \[\left\{ {\begin{array}{*{20}{c}}{x = A\cos \varphi = 2}\\{v = - A\omega \sin \varphi >0}\end{array}} \right. \to \left\{ {\begin{array}{*{20}{c}}{\cos \varphi = \frac{2}{4} = \frac{1}{2}}\\{\sin \varphi < 0}\end{array}} \right.\]
\[ \Rightarrow \varphi = - \frac{\pi }{3}\]
\[ \Rightarrow x = 4\cos \left( {\frac{\pi }{3}t - \frac{\pi }{3}} \right)cm\]
Đáp án cần chọn là: A
>Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
225 Đánh giá
50%
40%
0%
0%
0%