Câu hỏi:

18/04/2022 751

Cho hàm số y=f(x)  xác định và liên tục trên  \{0}thỏa mãn x2.f2(x)+(2x1).f(x)=x.f'(x)1 với x\{0}  đồng thời f(1)=2 . Tính 12f(x)dx

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Ta có x2.f2(x)+(2x1).f(x)=x.f'(x)1

x2.f2(x)+2x.f(x)+1=x.f'(x)+f(x)

[x.f(x)+1]2=[x.f(x)]'[x.f(x)+1]2=[x.f(x)+1]'

[x.f(x)+1]'[x.f(x)+1]2=1

[x.f(x)+1]'[x.f(x)+1]2dx=dxd[x.f(x)+1][x.f(x)+1]2=dx1x.f(x)+1=x+C.

Theo đề bài ta có f(1)=2  nên C = 0 suy ra f(x)=1x21x.

Nên 12f(x)dx=121x21xdx=1xlnx12=ln212.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Xét hình nằm ở góc phần tư thứ nhất.

Bên trong hình vuông cạnh a, dựng hình sao bốn cạnh đều như hình vẽ bên (các kích thước cần thiết cho như ở trong hình). Tính thể tích V của khối tròn xoay sinh ra khi quay hình sao đó quanh trục Ox.  (ảnh 2)

Khi đó ta viết phương trình đường thẳng đi qua hai điểm a2;a2  0;a4  y=x2+a4 .

Và viết phương trình đường thẳng đi qua hai điểm 

 a2;a2 a4;0  y=2xa2 .

Gọi V là thể tích khối tròn xoay cần tính.

Gọi V1  là thể tích khối tròn xoay khi quay hình phẳng được tô màu trong hình bên (chỉ xét ở góc phần tư thứ nhất) quanh trục hoành. Khi đó V=2V1 .

Ta có V1=π0a2x2+a42dxπa4a22xa22dx=5πa396

Suy ra thể tích cần tính V=2V1=5πa348 .

Bên trong hình vuông cạnh a, dựng hình sao bốn cạnh đều như hình vẽ bên (các kích thước cần thiết cho như ở trong hình). Tính thể tích V của khối tròn xoay sinh ra khi quay hình sao đó quanh trục Ox.  (ảnh 3)

Lời giải

Đáp án C

Mặt cầu (S) có tâm I(1; 2; 3) nên hình chiếu của I lên mặt phẳng (Oxy) là H(1; 2; 0)

Suy ra IH = 3.

Bán kính của đường tròn (C) là r=R2IH2=259=4

Diện tích của hình tròn là S=16π.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Biết limx5x2+2x+5x=5a+b với a,b . Tính S=5a+b.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay