Câu hỏi:

19/04/2022 810

Trong không gian Oxyz,cho điểm M thuộc mặt cầu (S) có phương trình \[{\left( {x - 3} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 2} \right)^2} = 9\] và ba điểm \[A\left( {1;0;0} \right)\], \[B\left( {2;1;3} \right)\]; \[C\left( {0;2; - 3} \right)\]. Biết rằng quỹ tích các điểm M thỏa mãn \[M{A^2} + 2\overrightarrow {MB} .\overrightarrow {MC} = 8\] là một đường tròn cố định, tính bán kính r đường tròn này.

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Chọn đáp án D

Mặt cầu \(\left( S \right)\)có tâm \(I\left( {3;3;2} \right)\)và bán kính \(R = 3\).

Gọi \(M\left( {x;y;z} \right)\), ta có \(M{A^2} = {\left( {1 - x} \right)^2} + {y^2} + {z^2} = {x^2} + {y^2} + {z^2} - 2{\rm{x}} + 1\).

\(\left\{ \begin{array}{l}\overrightarrow {MB} = \left( {2 - x;1 - y;3 - z} \right)\\\overrightarrow {MC} = \left( { - x;2 - y; - 3 - z} \right)\end{array} \right. \Rightarrow \overrightarrow {MB} .\overrightarrow {MC} = {x^2} + {y^2} + {z^2} - 3{\rm{x}} - 3y - 7\)

Khi đó \(M{A^2} + 2\overrightarrow {MB} .\overrightarrow {MC} = 8 \Leftrightarrow 3{{\rm{x}}^2} + 3{y^2} + 3{{\rm{z}}^2} - 6{\rm{x}} - 6y - 21 = 0\)

\( \Leftrightarrow {x^2} + {y^2} + {z^2} - 2{\rm{x}} - 2y - 7 = 0 \Rightarrow M\) thuộc mặt cầu \(\left( {S'} \right)\) có tâm \(I'\left( {1;1;0} \right)\), bán kính \(R' = 3\).

Như vậy \(M \in \left( S \right) \cap \left( {S'} \right)\), tập hợp các điểm M thỏa mãn bài toán là đường tròn \(\left( C \right)\)có tâm Hlà trung điểm của đoạn thẳng \[II'\] (vì \(R = R' = 3\)).

 Trong không gian Oxyz,cho điểm M thuộc mặt cầu (S) có phương trình  (ảnh 1)

Bán kính của đường tròn \(\left( C \right)\) là \(r = \sqrt {{R^2} - I{H^2}} = \sqrt 6 \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian Oxyz,cho hai vectơ \[\vec u = \left( {1;0;2} \right)\] và \[\vec v = \left( { - 1;2;0} \right).\] Tính \[P = \cos \left( {\vec u;\vec v} \right).\]

Xem đáp án » 19/04/2022 7,078

Câu 2:

Trong không gian Oxyz,cho hai đường thẳng \[d:\frac{{x - 1}}{1} = \frac{{y - 1}}{2} = \frac{{z - 1}}{1}\] và \[d':\frac{{x + 2}}{4} = \frac{{y - 1}}{2} = \frac{{z - 1}}{1}.\] Biết rằng d cắt \[d'\] tại \[A\left( {a;b;c} \right).\] Tính \[S = a + b + c.\]

Xem đáp án » 19/04/2022 3,752

Câu 3:

Có bao nhiêu giá trị nguyên của tham số m để hàm số \[y = \left| {{x^4} - 4{x^3} - 8{x^2} - m} \right|\] có đúng 7 điểm cực trị?

Xem đáp án » 19/04/2022 1,942

Câu 4:

Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số \[y = {x^2} - 4x + 4\], trục tung và trục hoành. Xác định \[k\] để đường thẳng d đi qua điểm \[A\left( {0;4} \right)\] có hệ số góc \[k\] chia (H) thành hai phần có diện tích bằng nhau (như hình vẽ bên).

 Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y=x^2-4x+4, trục tung và trục hoành. (ảnh 1)

Xem đáp án » 19/04/2022 1,602

Câu 5:

Cho \[a,{\rm{ }}b,{\rm{ }}x\] là các số thực dương tùy ý thỏa mãn \[{\log _2}x = 2{\log _2}a + 3{\log _2}b.\] Mệnh đề nào dưới đây là đúng?

Xem đáp án » 19/04/2022 1,047

Câu 6:

Cho hàm số f(x) có bảng biến thiên như sau:

 Cho hàm số f(x) có bảng biến thiên như sau:Hàm số đã cho đồng biến trên khoảng nào dưới đây? (ảnh 1)

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Xem đáp án » 19/04/2022 911

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store