Câu hỏi:

19/04/2022 979

Trong không gian Oxyz,cho điểm M thuộc mặt cầu (S) có phương trình \[{\left( {x - 3} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 2} \right)^2} = 9\] và ba điểm \[A\left( {1;0;0} \right)\], \[B\left( {2;1;3} \right)\]; \[C\left( {0;2; - 3} \right)\]. Biết rằng quỹ tích các điểm M thỏa mãn \[M{A^2} + 2\overrightarrow {MB} .\overrightarrow {MC} = 8\] là một đường tròn cố định, tính bán kính r đường tròn này.

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Chọn đáp án D

Mặt cầu \(\left( S \right)\)có tâm \(I\left( {3;3;2} \right)\)và bán kính \(R = 3\).

Gọi \(M\left( {x;y;z} \right)\), ta có \(M{A^2} = {\left( {1 - x} \right)^2} + {y^2} + {z^2} = {x^2} + {y^2} + {z^2} - 2{\rm{x}} + 1\).

\(\left\{ \begin{array}{l}\overrightarrow {MB} = \left( {2 - x;1 - y;3 - z} \right)\\\overrightarrow {MC} = \left( { - x;2 - y; - 3 - z} \right)\end{array} \right. \Rightarrow \overrightarrow {MB} .\overrightarrow {MC} = {x^2} + {y^2} + {z^2} - 3{\rm{x}} - 3y - 7\)

Khi đó \(M{A^2} + 2\overrightarrow {MB} .\overrightarrow {MC} = 8 \Leftrightarrow 3{{\rm{x}}^2} + 3{y^2} + 3{{\rm{z}}^2} - 6{\rm{x}} - 6y - 21 = 0\)

\( \Leftrightarrow {x^2} + {y^2} + {z^2} - 2{\rm{x}} - 2y - 7 = 0 \Rightarrow M\) thuộc mặt cầu \(\left( {S'} \right)\) có tâm \(I'\left( {1;1;0} \right)\), bán kính \(R' = 3\).

Như vậy \(M \in \left( S \right) \cap \left( {S'} \right)\), tập hợp các điểm M thỏa mãn bài toán là đường tròn \(\left( C \right)\)có tâm Hlà trung điểm của đoạn thẳng \[II'\] (vì \(R = R' = 3\)).

 Trong không gian Oxyz,cho điểm M thuộc mặt cầu (S) có phương trình  (ảnh 1)

Bán kính của đường tròn \(\left( C \right)\) là \(r = \sqrt {{R^2} - I{H^2}} = \sqrt 6 \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian Oxyz,cho hai vectơ \[\vec u = \left( {1;0;2} \right)\] và \[\vec v = \left( { - 1;2;0} \right).\] Tính \[P = \cos \left( {\vec u;\vec v} \right).\]

Xem đáp án » 19/04/2022 7,382

Câu 2:

Trong không gian Oxyz,cho hai đường thẳng \[d:\frac{{x - 1}}{1} = \frac{{y - 1}}{2} = \frac{{z - 1}}{1}\] và \[d':\frac{{x + 2}}{4} = \frac{{y - 1}}{2} = \frac{{z - 1}}{1}.\] Biết rằng d cắt \[d'\] tại \[A\left( {a;b;c} \right).\] Tính \[S = a + b + c.\]

Xem đáp án » 19/04/2022 3,994

Câu 3:

Có bao nhiêu giá trị nguyên của tham số m để hàm số \[y = \left| {{x^4} - 4{x^3} - 8{x^2} - m} \right|\] có đúng 7 điểm cực trị?

Xem đáp án » 19/04/2022 1,994

Câu 4:

Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số \[y = {x^2} - 4x + 4\], trục tung và trục hoành. Xác định \[k\] để đường thẳng d đi qua điểm \[A\left( {0;4} \right)\] có hệ số góc \[k\] chia (H) thành hai phần có diện tích bằng nhau (như hình vẽ bên).

 Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y=x^2-4x+4, trục tung và trục hoành. (ảnh 1)

Xem đáp án » 19/04/2022 1,632

Câu 5:

Cho \[a,{\rm{ }}b,{\rm{ }}x\] là các số thực dương tùy ý thỏa mãn \[{\log _2}x = 2{\log _2}a + 3{\log _2}b.\] Mệnh đề nào dưới đây là đúng?

Xem đáp án » 19/04/2022 1,180

Câu 6:

Cho hàm số f(x) có bảng biến thiên như sau:

 Cho hàm số f(x) có bảng biến thiên như sau:Hàm số đã cho đồng biến trên khoảng nào dưới đây? (ảnh 1)

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Xem đáp án » 19/04/2022 937

Bình luận


Bình luận