Trong không gian Oxyz,cho điểm M thuộc mặt cầu (S) có phương trình \[{\left( {x - 3} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 2} \right)^2} = 9\] và ba điểm \[A\left( {1;0;0} \right)\], \[B\left( {2;1;3} \right)\]; \[C\left( {0;2; - 3} \right)\]. Biết rằng quỹ tích các điểm M thỏa mãn \[M{A^2} + 2\overrightarrow {MB} .\overrightarrow {MC} = 8\] là một đường tròn cố định, tính bán kính r đường tròn này.
Quảng cáo
Trả lời:
Lời giải:
Chọn đáp án D
Mặt cầu \(\left( S \right)\)có tâm \(I\left( {3;3;2} \right)\)và bán kính \(R = 3\).
Gọi \(M\left( {x;y;z} \right)\), ta có \(M{A^2} = {\left( {1 - x} \right)^2} + {y^2} + {z^2} = {x^2} + {y^2} + {z^2} - 2{\rm{x}} + 1\).
\(\left\{ \begin{array}{l}\overrightarrow {MB} = \left( {2 - x;1 - y;3 - z} \right)\\\overrightarrow {MC} = \left( { - x;2 - y; - 3 - z} \right)\end{array} \right. \Rightarrow \overrightarrow {MB} .\overrightarrow {MC} = {x^2} + {y^2} + {z^2} - 3{\rm{x}} - 3y - 7\)
Khi đó \(M{A^2} + 2\overrightarrow {MB} .\overrightarrow {MC} = 8 \Leftrightarrow 3{{\rm{x}}^2} + 3{y^2} + 3{{\rm{z}}^2} - 6{\rm{x}} - 6y - 21 = 0\)
\( \Leftrightarrow {x^2} + {y^2} + {z^2} - 2{\rm{x}} - 2y - 7 = 0 \Rightarrow M\) thuộc mặt cầu \(\left( {S'} \right)\) có tâm \(I'\left( {1;1;0} \right)\), bán kính \(R' = 3\).
Như vậy \(M \in \left( S \right) \cap \left( {S'} \right)\), tập hợp các điểm M thỏa mãn bài toán là đường tròn \(\left( C \right)\)có tâm Hlà trung điểm của đoạn thẳng \[II'\] (vì \(R = R' = 3\)).
Bán kính của đường tròn \(\left( C \right)\) là \(r = \sqrt {{R^2} - I{H^2}} = \sqrt 6 \).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
Chọn đáp án D
Ta có \(P = \cos \left( {\vec u;\vec v} \right) = \frac{{\vec u.\vec v}}{{\left| {\vec u} \right|.\left| {\vec v} \right|}} = \frac{{1.\left( { - 1} \right) + 0.2 + 2.0}}{{\sqrt {{1^2} + {0^2} + {2^2}} .\sqrt {{{\left( { - 1} \right)}^2} + {2^2} + {0^2}} }} = - \frac{1}{5}.\)
Lời giải
Lời giải:
Chọn đáp án A
Ta có \(d:\left\{ \begin{array}{l}x = 1 + t\\y = 1 + 2t\\z = 1 + t\end{array} \right.{\rm{ }}\left( {t \in \mathbb{R}} \right)\) và \(d':\left\{ \begin{array}{l}x = - 2 + 4t'\\y = 1 + 2t'\\z = 1 + t'\end{array} \right.{\rm{ }}\left( {t' \in \mathbb{R}} \right)\).
Điểm \(A = d \cap d' \Rightarrow A\left( {t + 1;2t + 1;t + 1} \right)\).
Giải hệ \(\left\{ {\begin{array}{*{20}{l}}{1 + t = - 2 + 4t'}\\{1 + 2t = 1 + 2t'}\\{1 + t = 1 + t'}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\left\{ {\begin{array}{*{20}{l}}{t = 1}\\{t' = 1}\end{array}} \right.}\\{1 + t = 1 + t'}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{t = 1}\\{t' = 1}\end{array}} \right. \Rightarrow A\left( {2;3;2} \right) \Rightarrow S = 7.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.