Câu hỏi:

19/04/2022 9,686

Chất Iốt phóng xạ \[{}_{53}^{131}I\] dùng trong y tế có chu kỳ bán rã 8 ngày đêm. Nếu nhận được 100g chất này thì sau 8 tuần lễ còn bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Trả lời:

  t = 8 tuần = 56 ngày = 7.T .Suy ra sau thời gian t thì khối lượng chất phóng xạ \[{}_{53}^{131}I\] còn lại là :

\[m = {m_0}{.2^{ - \frac{t}{T}}} = {100.2^{ - 7}} = 0,78gam\]

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời:

 T = 3,8 ngày ; t = 11,4 = 3T ngày. Do đó ta đưa về hàm mũ để giải nhanh như sau:

  \[H = {H_0}{.2^{ - \frac{t}{T}}}\]

\[ \Leftrightarrow \frac{H}{{{H_0}}} = {2^{ - \frac{t}{T}}}\]

\[ \Leftrightarrow \frac{H}{{{H_0}}} = {2^{ - 3}} = \frac{1}{8} = 12,5\% \]

Đáp án cần chọn là: C

Lời giải

Trả lời:

Ta có:

hcλ=WαWα'

hcλ=mThmTh+mαmUmThmαWα'

\[ \Leftrightarrow \frac{{6,{{625.10}^{ - 34}}{{.3.10}^8}}}{\lambda } = \frac{{229,9737u}}{{229,9737u + 4,00151u}}\]

\[.\left( {233,9904u - 229,9737u - 4,00151u} \right).{c^2} - 12,89MeV\]

\[ \Leftrightarrow \frac{{6,{{625.10}^{ - 34}}{{.3.10}^8}}}{\lambda } = 0,983.0,01519u.{c^2} - 12,89MeV\]

\[ \Leftrightarrow \frac{{6,{{625.10}^{ - 34}}{{.3.10}^8}}}{\lambda } = 0,983.0,01519.\frac{{931,5MeV}}{{{c^2}}}.{c^2} - 12,89MeV\]

\[ \Leftrightarrow \lambda = \frac{{6,{{625.10}^{ - 34}}{{.3.10}^8}}}{{\left( {0,983.0,01519.931,5 - 12,89} \right){{.10}^6}.1,{{6.10}^{ - 19}}}}\]

\[ \Leftrightarrow \lambda = 1,{22.10^{ - 12}}\left( m \right)\]

Đáp án cần chọn là: C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP