Câu hỏi:

19/04/2022 7,031 Lưu

Cho lăng trụ đứng tam giác ABC.A'B'C'  có đáy là một tam giác vuông cân tại B,AB=BC=a,AA'=a2,M  là trung điểm BC . Tính khoảng cách giữa hai đường thẳng AM  và B'C.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

+) Gọi E  là trung điểm của BB' .

Khi đó: EM//B'CB'C//AME.

Ta có: dB'C,AM=dB'C,AME=dC,AME=dB,AME.

+) Xét khối chóp B.AME  có các cạnh BE,AB,BM  đôi một vuông góc nên 1d2B,AME=1AB2+1MB2+1EB2=7a2.

dB,AME=a77.

Vậy dB'C,AM=a77.

Cho lăng trụ đứng tam giác ABC.A'B'C'  có đáy là một tam giác vuông cân tại B, AB = BC = a,AA' = a căn bậc 2 của 2 (ảnh 1)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Có BCABBCSABCSAB

BM  là hình chiếu của CM  lên mặt phẳng SAB .

Suy ra CM,SAB=CMB^

Ta có: tanCMB^=BCMB=2ABSB=2ABSA2+AB2=2.2a2a32+2a2=1

Vậy CM,SAB=450.

Cho hình chóp SABC  có SA vuông góc với (ABC) , SA = 2a căn bậc 2 của 3, AB = 2a, tam giác vuông cân tại B (ảnh 1)

Lời giải

Đáp án C

Ta có:2fx4=0fx=2

Số nghiệm của phương trình bằng số giao điểm của đồ thị hàm số y=fx  và đường thẳng y=2 .

Dựa vào bảng biến thiên, ta có đồ thị hàm số y=fx  cắt đường thẳng y=2  tại 2 điểm phân biệt.

Vậy phương trình 2fx4=0  có 2 nghiệm phân biệt.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP