Câu hỏi:

20/04/2022 5,581 Lưu

Tính \[P = \frac{1}{{{{\log }_2}2020!}} + \frac{1}{{{{\log }_3}2020!}} + \frac{1}{{{{\log }_4}2020!}} + .... + \frac{1}{{{{\log }_{2020}}2020!}}.\]

A.\[P = 2020.\]

B.\[P = 2020!.\]

C.\[P = \frac{1}{{2020}}.\]

D.\[P = 1.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn đáp án B

Ta có \(P = {\log _{2020!}}2 + {\log _{2020!}}3 + {\log _{2020!}}4 + ... + {\log _{2020!}}2020\)

\( = {\log _{2020!}}\left( {2.3.4...2020} \right) = {\log _{2020!}}\left( {2020!} \right) = 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A.\[K\left( {1;1;1} \right).\]

B.\[K\left( {5; - 3;7} \right).\]

C.\[K\left( {6; - 2;8} \right).\]

D.\[K\left( {3; - 1;4} \right).\]

Lời giải

Chọn đáp án D

Ta có B là trung điểm của đoạn thẳng AK\( \Rightarrow \left\{ \begin{array}{l}\frac{{1 + {x_K}}}{2} = 2\\\frac{{ - 3 + {y_K}}}{2} = - 2\\\frac{{2 + {z_K}}}{2} = 3\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_K} = 3\\{y_K} = - 1\\{z_K} = 4\end{array} \right. \Rightarrow K\left( {3; - 1;4} \right)\).

Câu 2

A.\[\Delta:\frac{{x - 2}}{2} = \frac{y}{1} = \frac{{z - 2}}{{ - 1}}.\]

B.\[\Delta:\frac{{x - 2}}{2} = \frac{y}{{ - 5}} = \frac{{z - 2}}{{ - 1}}.\]

C.\[\Delta:\frac{{x - 3}}{3} = \frac{{y - 1}}{1} = \frac{{z - 1}}{1}.\]

D.\[\Delta:\frac{{x - 3}}{2} = \frac{{y - 1}}{{ - 5}} = \frac{{z - 1}}{{ - 1}}.\]

Lời giải

Chọn đáp án D

Gọi \(M = d \cap \left( P \right)\), ta có \(d:\left\{ \begin{array}{l}x = 1 + t\\y = - 1 + t\\z = 3 - t\end{array} \right.{\rm{ }}\left( {t \in \mathbb{R}} \right) \Rightarrow M\left( {t + 1;t - 1;3 - t} \right)\).

Điểm \[M \in \left( P \right) \Rightarrow 2\left( {t + 1} \right) - 5\left( {t - 1} \right) - \left( {3 - t} \right) = 0 \Leftrightarrow - 2t + 4 = 0 \Leftrightarrow t = 2 \Rightarrow M\left( {3;1;1} \right).\]

Mặt phẳng \(\left( P \right)\) có một VTPT là \(\overrightarrow n = \left( {2; - 5; - 1} \right)\).

Ta có \(\Delta \bot \left( P \right) \Rightarrow \Delta \) nhận \(\overrightarrow n = \left( {2; - 5; - 1} \right)\) là một VTCP.

Kết hợp với Δ qua \(M\left( {3;1;1} \right) \Rightarrow \Delta :\frac{{x - 3}}{2} = \frac{{y - 1}}{{ - 5}} = \frac{{z - 1}}{{ - 1}}.\)

Câu 3

A.\[\left( { - \frac{1}{2};\frac{7}{4};\frac{1}{4}} \right)\]

B.\[\left( {\frac{1}{3};\frac{7}{4};\frac{1}{4}} \right)\]

C.\[\left( { - \frac{1}{3};\frac{7}{4}; - \frac{1}{4}} \right)\]

D.\[\left( { - \frac{1}{2};\frac{7}{4}; - \frac{1}{4}} \right)\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A.\[\left\{ {\begin{array}{*{20}{l}}{x = 1 - 3t}\\{y = 0}\\{z = 1 + t}\end{array}} \right..\]

B.\[\left\{ {\begin{array}{*{20}{l}}{x = 1 - 3t}\\{y = 0}\\{z = 1 - t}\end{array}} \right..\]

C.\[\left\{ {\begin{array}{*{20}{l}}{x = 1 - 3t}\\{y = t}\\{z = 1 + t}\end{array}} \right..\]

D.\[\left\{ {\begin{array}{*{20}{l}}{x = 1 + 3t}\\{y = 0}\\{z = 1 + t}\end{array}} \right..\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A.\[\vec u = \left( {2;3;1} \right).\]

B.\[\vec u = \left( {2;1; - 2} \right).\]

C.\[\vec u = \left( {2; - 3;1} \right).\]

D.\[\vec u = \left( {2;1;2} \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP