Câu hỏi:

21/04/2022 754

Cho hàm số f(x) có đạo hàm liên tục trên [-1;1] và thỏa mãn f(1) = 0,f'(x)2+4f(x)=8x2+16x8 với mọi x thuộc

[-1;1]. Giá trị của 01fxdx  bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có:

f'(x)2+4fx=8x2+16x811f'x2dx+2112fxdx=118x2+16x8dx (1).

Xét I=112fxdx, đặt u=fxdv=2dxdu=f'xdxv=2x+2.

Do đó I=112fxdx=2x+2fx11112x+2f'xdx=112x+2f'xdx.

Từ (1) suy ra 11f'x2dx+2112fxdx=118x2+16x8dx

11f'x2dx2112x+2f'xdx+112x+22dx=1112x2+24x4dx

11f'x2x+22dx=0f'x=2x+2fx=x2+2x+C.

Vì f(1)=0 nên C=-3. Suy ra 01fxdx=01x2+2x3dx=53.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đồ thị hàm số y=f(x)+a là đồ thị y=f(x) tịnh tiến lên trên một đoạn thẳng bằng a khi a>0 tịnh tiến xuống dưới một đoạn bằng |a| khia<0.

Hơn nữa đồ thị y=|f(x)+a| là:

+) Phần đồ thị của y=f(x)+a nằm phía trên trục Ox.

+) Lấy đối xứng phần đồ thị của y=f(x)+a nằm dưới Ox qua Ox và bỏ đi phần đồ thị của y=f(x)+a nằm dưới Ox.

Vậy để đồ thị hàm số y=|f(x)+a| có ba điểm cực trị thì đồ thị hàm số y=f(x)+a xảy ra hai trường hợp:

+) Đồ thị hàm số y=f(x)+a có điểm cực tiểu nằm phía trên trục hoành hoặc thuộc trục hoành và cực đại dương. Khi đó a3.

+) Đồ thị hàm số y=f(x)+a có điểm cực đại nằm phía dưới trục hoành hoặc thuộc trục hoành và cực tiểu âm. Khi đó a1.

Vậy giá trị a cần tìm là a1 hoặc a3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho hàm số y=f(x) có bảng biến thiên như hình vẽ dưới đây:

Cho hàm số  y=f(x) có bảng biến thiên như hình vẽ dưới đây:   Khẳng định nào sau đây sai? (ảnh 1)

Khẳng định nào sau đây sai?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Họ nguyên hàm của hàm số fx=1x+1  

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay