Câu hỏi:

21/04/2022 6,110 Lưu

Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(0;1;1), B(1;3;1) . Giả sử C, D là hai điểm di động thuộc mặt phẳng  (P):2x+y2z1=0 sao cho CD = 4 và A, C, D thẳng hàng. Gọi S1, S2 lần lượt là diện tích lớn nhất và nhỏ nhất của tam giác BCD. Khi đó tổng S1+S2  có giá trị bằng bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Gọi K và H lần lượt là hình chiếu vuông góc của B trên mặt phẳng (P) và đường thẳng CD.

Khi đó:  BKBHAB(*)

Ta có:  SΔBCD=BH.CD2=2BH(*)2BKSΔBCD2AB(1).

Ta có  BK=dB,(P)=232122+12+22=83 AB=3  (2).

Từ (1) và (2), suy ra: S2=163SΔBCD6=S1S1+S2=343.

Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(0;-1;-1), B(-1;-3;1) . Giả sử C, D là hai điểm di động thuộc mặt phẳng (ảnh 1)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

Hình chiếu vuông góc của A(1;2;4)  trên mặt phẳng (Oyz) là điểm N(0;2;4)

Chú ý: Điểm A(x0;y0;z0)  có hình chiếu vuông góc lên: 

ü Mặt phẳng:

Ÿ (Oxy) là điểm A1(x0;y0;0)

Ÿ (Oyz) là điểm A2(0;y0;z0)

Ÿ (Oxz) là điểm A3(x0;0;z0)

ü Trục:

Ÿ Ox là điểm A4(x0;0;0)

Ÿ Oy là điểm A5(0;y0;0)

Ÿ Oz là điểm A6(0;0;z0)

Lời giải

Đáp án A

Do (SAC)(ABC)(SAB)(ABC)(SAC)(SAB)=SASA(ABC)SC,(ABC)=SCA^=60°

SA=ACtanSCA^=a3.

Gọi I, H lần lượt là hình chiếu vuông góc của A trên BC, SI, khi đó: dA,(SBC)=AH

Tam giác ABC đều cạnh a nên AI=a32

Khi đó xét tam giác SAI: 1AH2=1SA2+1AI2=13a2+43a2=53a2

AH=a155.

Vậy h=dA,(SBC)=a155.

Cho hình chóp S.ABC có ABC là tam giác đều cạnh a. Hai mặt phẳng (SAC), (SAB) cùng vuông góc với đáy (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP