Câu hỏi:

23/04/2022 2,112

Cho hàm số y=fx=ax3+bx2+cx+d  có bảng biến thiên như sau. Khi đó phương trình fx=m  có bốn nghiệm  x1,x2,x3,x4thỏa mãn x1<x2<x3<1<x4.  khi và chỉ khi

Cho hàm số y = f(x) = ax^3 + bx^2 + cx + d  có bảng biến thiên như sau (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

Từ bảng biến thiên của hàm số y=fx,  ta suy ra bảng biến thiên của hàm số y=fx  như sau:

Cho hàm số y = f(x) = ax^3 + bx^2 + cx + d  có bảng biến thiên như sau (ảnh 2)

Vì bài toán quan tâm tới việc sắp thứ tự các nghiệm với giá trị x = 1 do đó ta cần tính được giá trị của hàm số tại x = 1. Nhưng ta nhận thấy M(0;6) và N(2;0) là hai điểm cực trị của hàm số. Khi đó, trung điểm I(1;3) của MN cũng thuộc đồ thị hàm số hay f1=3  nên ta có bảng biến thiên sau:

Cho hàm số y = f(x) = ax^3 + bx^2 + cx + d  có bảng biến thiên như sau (ảnh 3)

Dựa vào bảng biến thiên này, suy ra phương trình fx=m  có bốn nghiệm x1,x2,x3,x4  thỏa mãn x1<x2<x3<1<x4  khi và chỉ khi 3<m<6.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án B

Chọn ra 3 cuốn sách từ 10 cuốn (không quan tâm tới thứ tự) nên số cách chọn là: C103.

Lời giải

Đáp án B

Hàm số xác định trên tập  Loại C, D.

Hàm số đồng biến trên ;+  Loại A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP