Câu hỏi:

25/04/2022 672 Lưu

Cho mặt cầuS:x+12+y42+z2=8  và các điểm A3;0;0 , B4;2;1 . Gọi M là một điểm bất kỳ thuộc mặt cầu (S) . Tìm giá trị nhỏ nhất của biểu thức MA+2MB   ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho mặt cầu  và các điểm  ,  . Gọi  là một điểm bất kỳ thuộc mặt cầu  . Tìm giá trị nhỏ nhất của biểu thức    ? (ảnh 1)

Mặt cầu (S)  có tâm I1;4;0 , bán kính R=22 .

IA=42=2R=2IM; IB=30>RB    nằm ngoài mặt cầu (S) .

Lấy điểm K  thuộc tia IA sao choIK=14IAK0;3;0 .

 IK=12R=12IMK  nằm trong mặt cầu (S)

Lại có:ΔIAM~ΔIMKc.g.cMAKM=IAIM=2MA=2MK   .

Suy ra: MA+2MB=2MK+2MB2BK=62 .

Dấu đẳng thức xảy ra M=BKS  và M  nằm giữa B,K .

Vậy MA+2MBmin=62 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn A

Đạo hàm của hàm số y=5x  là y'=5xln5 .

Câu 2

Lời giải

Chọn B

Bảng biến thiên của hàm số

Cho hàm số   xác định trên   và có bảng xét dấu   như hình bên. Khẳng định nào sau đây sai? (ảnh 2)

 

Dựa theo BBT, ta thấy phương án B  sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP