Câu hỏi:

29/04/2022 3,088

Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên?

 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên? (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A.

Nhìn vào đồ thị ta dễ thấy đây là đồ thị hàm bậc 4 trùng phương, mà \[\mathop {\lim }\limits_{x \to \pm \infty } y = + \infty \] nên hệ số của \[{x^4}\] phải >0 =>Đáp án A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt đáy và SA = căn 2 . Góc giữa đường thẳng  (ảnh 1)

Ta có: \(SA \bot \left( {ABCD} \right) \supset AC \Rightarrow SA \bot AC \Rightarrow \left( {SC,\left( {ABCD} \right)} \right) = \widehat {SCA}.\)

Xét tam giác vuông \(SAC,\) ta có: \(\tan \widehat {SCA} = \frac{{SA}}{{AC}} = \frac{{a\sqrt 2 }}{{a\sqrt 2 }} = 1 \Rightarrow \widehat {SCA} = {45^0}.\)

Câu 2

Lời giải

Đáp án C.

Ta có \(y' = - 2f'\left( {1 - 2x} \right).\)

Hàm số \(y = f\left( {1 - 2x} \right)\) nghịch biến khi và chỉ khi \(y' = - 2f'\left( {1 - 2x} \right) < 0 \Leftrightarrow f'\left( {1 - 2x} \right) >0.\)</>

Từ bảng xét dấu đã cho, ta có \(f'\left( {1 - 2x} \right) >0 \Leftrightarrow \left[ \begin{array}{l} - 3 < 1 - 2x < - 1\\1 - 2x >1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}1 < x < 2\\x < 0\end{array} \right.\)

Do đó, hàm số \(y = f\left( {1 - 2x} \right)\) nghịch biến trên các khoảng \(\left( { - \infty ;0} \right)\)và \(\left( {1;2} \right).\)

Vậy, hàm số \(y = f\left( {1 - 2x} \right)\) nghịch biến trên khoảng \(\left( { - 2;0} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP