Câu hỏi:
15/06/2022 216Gọi \(M,m\) lần lượt là giá trị lớn nhất giá trị nhỏ nhất của hàm số \(y = - {x^3} + 6{x^2} - 9x + 5\) trên đoạn \(\left[ { - 1;2} \right]\). Khi đó tổng \(M + m\) bằng
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Đáp án B.
Ta có:
\[\begin{array}{l}y' = - 3{x^2} + 12x - 9\\y' = 0 < = >\left[ \begin{array}{l}x = 3\\x = 1\end{array} \right.\end{array}\]
Vì xét trong khoảng [-1;2] nên ta lấy x = 1
Với x = 1 thì y = 1
Với x = -1 thì y = 21
Với x = 2 thì y = 3
\[ = >\mathop {Min}\limits_{x \in {\rm{[}} - 1;2]} y = 1,\mathop {Max}\limits_{x \in {\rm{[}} - 1;2]} y = 21\] =>Tổng bằng 22
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(f\left( x \right),\) bảng xét dấu của \(f'\left( x \right)\) như sau:
Hàm số \(y = f\left( {1 - 2x} \right)\) nghịch biến trên khoảng nào dưới đây?
Câu 2:
Cho hàm số \(y = \frac{{mx - 18}}{{x - 2m}}.\) Gọi \(S\) là tập hợp các giá trị nguyên của tham số \(m\) để hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right).\) Tổng các phần tử của \(S\) bằng
Câu 3:
Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a,SA\) vuông góc với mặt đáy và \(SA = a\sqrt 2 .\) Góc giữa đường thẳng \(SC\) và mặt phẳng \(\left( {ABCD} \right)\) bằng
Câu 4:
Cho \(\left( {{u_n}} \right)\) là một cấp số cộng có \({u_1} = 3\) và công sai d=2. Tìm \({u_{20}}?\)
Câu 5:
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) có đồ thị như hình vẽ. Phương trình \(f\left( {2 - f\left( x \right)} \right) = 0\) có tất cả bao nhiêu nghiệm thực phân biệt?
Câu 6:
Đường cong ở hình dưới đây là đồ thị của hàm số \(y = \frac{{x + a}}{{bx + c}},\left( {a,b,c \in \mathbb{Z}} \right).\) Khi đó giá trị biểu thức \(T = a - 3b - 2c\) bằng
Câu 7:
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên?
về câu hỏi!