Câu hỏi:
29/04/2022 232Tập nghiệm của bất phương trình \({6.9^x} - {12.6^x} + {6.4^x} \le 0\) có dạng \(S = \left[ {a;b} \right].\) Giá trị của biểu thức \({a^2} + {b^2}\) bằng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án A.
Ta có: \({6.9^x} - {13.6^x} + {6.4^x} \le 0 \Leftrightarrow 6.{\left( {\frac{9}{4}} \right)^x} - 13.{\left( {\frac{6}{4}} \right)^2} + 6 \le 0 \Leftrightarrow 6.{\left( {\frac{3}{2}} \right)^{2x}} - 13.{\left( {\frac{3}{2}} \right)^x} + 6 \le 0\left( 1 \right).\)
Đặt \({\left( {\frac{3}{2}} \right)^x} = t;\left( {t >0} \right)\)
\(\left( 1 \right) \Leftrightarrow 6{t^2} - 13t + 6 \le 0 \Leftrightarrow \frac{2}{3} \le t \le \frac{3}{2} \Leftrightarrow \frac{2}{3} \le {\left( {\frac{3}{2}} \right)^2} \le \frac{3}{2} \Leftrightarrow - 1 \le x \le 1.\)
Vậy tập nghiệm của bất phương trình là \(S = \left[ { - 1;1} \right] \Rightarrow a = - 1;b = 1 \Rightarrow {a^2} + {b^2} = 2.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số \(f\left( x \right),\) bảng xét dấu của \(f'\left( x \right)\) như sau:
Hàm số \(y = f\left( {1 - 2x} \right)\) nghịch biến trên khoảng nào dưới đây?
Câu 2:
Cho hàm số \(y = \frac{{mx - 18}}{{x - 2m}}.\) Gọi \(S\) là tập hợp các giá trị nguyên của tham số \(m\) để hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right).\) Tổng các phần tử của \(S\) bằng
Câu 3:
Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a,SA\) vuông góc với mặt đáy và \(SA = a\sqrt 2 .\) Góc giữa đường thẳng \(SC\) và mặt phẳng \(\left( {ABCD} \right)\) bằng
Câu 4:
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) có đồ thị như hình vẽ. Phương trình \(f\left( {2 - f\left( x \right)} \right) = 0\) có tất cả bao nhiêu nghiệm thực phân biệt?
Câu 5:
Cho \(\left( {{u_n}} \right)\) là một cấp số cộng có \({u_1} = 3\) và công sai d=2. Tìm \({u_{20}}?\)
Câu 6:
Đường cong ở hình dưới đây là đồ thị của hàm số \(y = \frac{{x + a}}{{bx + c}},\left( {a,b,c \in \mathbb{Z}} \right).\) Khi đó giá trị biểu thức \(T = a - 3b - 2c\) bằng
Câu 7:
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ bên?
về câu hỏi!