Câu hỏi:

29/04/2022 238 Lưu

Cho hình trụ với hai đáy là đường tròn đường kính \(2a,\) thiết diện qua trục là hình chữ nhật có diện tích bằng \(6{a^2}.\) Diện tích toàn phần của hình trụ bằng 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A.

Gọi \(R,h\) lần lượt là bán kính đáy và chiều cao của hình trụ.

Theo giả thiết, ta có \(\left\{ \begin{array}{l}R = a\\2.R.h = 6{a^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}R = a\\h = 3a\end{array} \right..\)

Vậy \({S_{tp}} = 2\pi Rh + 2\pi {R^2} = 2\pi a.3a + 2\pi {a^2} = 8\pi {a^2}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt đáy và SA = căn 2 . Góc giữa đường thẳng  (ảnh 1)

Ta có: \(SA \bot \left( {ABCD} \right) \supset AC \Rightarrow SA \bot AC \Rightarrow \left( {SC,\left( {ABCD} \right)} \right) = \widehat {SCA}.\)

Xét tam giác vuông \(SAC,\) ta có: \(\tan \widehat {SCA} = \frac{{SA}}{{AC}} = \frac{{a\sqrt 2 }}{{a\sqrt 2 }} = 1 \Rightarrow \widehat {SCA} = {45^0}.\)

Câu 2

Lời giải

Đáp án C.

Ta có \(y' = - 2f'\left( {1 - 2x} \right).\)

Hàm số \(y = f\left( {1 - 2x} \right)\) nghịch biến khi và chỉ khi \(y' = - 2f'\left( {1 - 2x} \right) < 0 \Leftrightarrow f'\left( {1 - 2x} \right) >0.\)</>

Từ bảng xét dấu đã cho, ta có \(f'\left( {1 - 2x} \right) >0 \Leftrightarrow \left[ \begin{array}{l} - 3 < 1 - 2x < - 1\\1 - 2x >1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}1 < x < 2\\x < 0\end{array} \right.\)

Do đó, hàm số \(y = f\left( {1 - 2x} \right)\) nghịch biến trên các khoảng \(\left( { - \infty ;0} \right)\)và \(\left( {1;2} \right).\)

Vậy, hàm số \(y = f\left( {1 - 2x} \right)\) nghịch biến trên khoảng \(\left( { - 2;0} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP