Câu hỏi:
29/04/2022 2,944Gọi \(S\) là tập hợp các số tự nhiên có bốn chữ số đôi một khác nhau lập từ các số \(0;1;2;3;4;5;6;7.\) Chọn ngẫu nhiên 1 số từ tập hợp \(S.\) Tính xác suất để số được chọn có đúng 2 chữ số chẵn.
Quảng cáo
Trả lời:
Đáp án A.
Đặt \(A = \left\{ {0;1;2;3;4;5;6;7} \right\}.\)
Gọi số tự nhiên cần tìm có 4 chữ số khác nhau thỏa mãn đề bài là \(\overline {abcd} \left( {a \ne 0} \right).\)
Số phần tử của \(S\) là \(7.A_7^3 = 1470.\)
* Số có 4 chữ số khác nhau sao cho có đúng 2 chữ số chẵn.
TH1: Tìm số có 4 chữ số khác nhau sao cho có đúng 2 chữ số chẵn (bao gồm cả số có chữ số 0 đứng đầu).
+ Chọn 2 chữ số chẵn trong tập \(A \Rightarrow \) có \(C_4^2\) cách.
+ Chọn 2 chữ số lẻ trong tập \(A \Rightarrow \) có \(C_4^2\) cách.
Vì là 4 chữ số khác nhau nên ta có \(C_4^2.C_4^2.4! = 864\) số.
TH2: Tìm số có 4 chữ số khác nhau sao cho có đúng 2 chữ số chẵn (chữ số 0 luôn đứng đàu)
+ Xếp chữ số 0 vào vị trí đầu tiên \( \Rightarrow \) có 1 cách.
+ Chọn 1 chữu số chẵn trong tập \(A\backslash \left\{ 0 \right\} \Rightarrow \) có \(C_3^1\) cách.
+ Chọn 2 chữ số lẻ trong tập \(A \Rightarrow \) có \(C_4^2\) cách.
Vì là 4 chữ số khác nhau mà chữ số 0 luôn đứng đầu nên ta có \(C_3^1.C_4^2.3! = 108\) số.
Vậy có \(864 - 108 = 756\) số thỏa mãn yêu cầu.
* Không gian mẫu: \(n\left( \Omega \right) = C_{1470}^1 = 1470.\)
\(A\) là biến cố “Số được chọn có đúng 2 chữ số chẵn” \( \Rightarrow n\left( A \right) = C_{756}^1 = 756.\)
Vậy \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{756}}{{1470}} = \frac{{18}}{{35}}.\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án D
Ta có: \(SA \bot \left( {ABCD} \right) \supset AC \Rightarrow SA \bot AC \Rightarrow \left( {SC,\left( {ABCD} \right)} \right) = \widehat {SCA}.\)
Xét tam giác vuông \(SAC,\) ta có: \(\tan \widehat {SCA} = \frac{{SA}}{{AC}} = \frac{{a\sqrt 2 }}{{a\sqrt 2 }} = 1 \Rightarrow \widehat {SCA} = {45^0}.\)
Lời giải
Đáp án C.
Ta có \(y' = - 2f'\left( {1 - 2x} \right).\)
Hàm số \(y = f\left( {1 - 2x} \right)\) nghịch biến khi và chỉ khi \(y' = - 2f'\left( {1 - 2x} \right) < 0 \Leftrightarrow f'\left( {1 - 2x} \right) >0.\)</>
Từ bảng xét dấu đã cho, ta có \(f'\left( {1 - 2x} \right) >0 \Leftrightarrow \left[ \begin{array}{l} - 3 < 1 - 2x < - 1\\1 - 2x >1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}1 < x < 2\\x < 0\end{array} \right.\)
Do đó, hàm số \(y = f\left( {1 - 2x} \right)\) nghịch biến trên các khoảng \(\left( { - \infty ;0} \right)\)và \(\left( {1;2} \right).\)
Vậy, hàm số \(y = f\left( {1 - 2x} \right)\) nghịch biến trên khoảng \(\left( { - 2;0} \right).\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận