Câu hỏi:

29/04/2022 1,710

Cho hàm số \(y = \frac{{x + m}}{{x - 3}}(m\) là tham số) thỏa mãn \(\mathop {\min }\limits_{\left[ { - 1;2} \right]} y = - 2.\) Mệnh đề nào dưới đây đúng? 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B.

Hàm số \(y = \frac{{x + m}}{{x - 3}}\) liên tục trên đoạn \(\left[ { - 1;2} \right]\) và có đạo hàm \(y' = \frac{{ - 3 - m}}{{{{\left( {x - 3} \right)}^2}}}\)

Nếu \(y' >0 \Leftrightarrow m < - 3\) thì hàm số đồng biến trên đoạn \(\left[ { - 1;2} \right]\) nên \(\mathop {\min }\limits_{\left[ { - 1;2} \right]} y = y\left( { - 1} \right) = \frac{{ - 1 + m}}{{ - 4}} = - 2 \Leftrightarrow m = 9\) không thỏa mãn.

Nếu \(y' < 0 \Leftrightarrow m >- 3\) hàm số nghịch biến trên đoạn \(\left[ { - 1;2} \right]\) nên \(\mathop {\min }\limits_{\left[ { - 1;2} \right]} y = y\left( 2 \right) = \frac{{2 + m}}{{ - 1}} = - 2 \Leftrightarrow m = 0\) thỏa mãn.</>

Vậy đáp án B đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt đáy và SA = căn 2 . Góc giữa đường thẳng  (ảnh 1)

Ta có: \(SA \bot \left( {ABCD} \right) \supset AC \Rightarrow SA \bot AC \Rightarrow \left( {SC,\left( {ABCD} \right)} \right) = \widehat {SCA}.\)

Xét tam giác vuông \(SAC,\) ta có: \(\tan \widehat {SCA} = \frac{{SA}}{{AC}} = \frac{{a\sqrt 2 }}{{a\sqrt 2 }} = 1 \Rightarrow \widehat {SCA} = {45^0}.\)

Câu 2

Lời giải

Đáp án C.

Ta có \(y' = - 2f'\left( {1 - 2x} \right).\)

Hàm số \(y = f\left( {1 - 2x} \right)\) nghịch biến khi và chỉ khi \(y' = - 2f'\left( {1 - 2x} \right) < 0 \Leftrightarrow f'\left( {1 - 2x} \right) >0.\)</>

Từ bảng xét dấu đã cho, ta có \(f'\left( {1 - 2x} \right) >0 \Leftrightarrow \left[ \begin{array}{l} - 3 < 1 - 2x < - 1\\1 - 2x >1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}1 < x < 2\\x < 0\end{array} \right.\)

Do đó, hàm số \(y = f\left( {1 - 2x} \right)\) nghịch biến trên các khoảng \(\left( { - \infty ;0} \right)\)và \(\left( {1;2} \right).\)

Vậy, hàm số \(y = f\left( {1 - 2x} \right)\) nghịch biến trên khoảng \(\left( { - 2;0} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP